

13585 N.E. Whitaker Way • Portland, OR 97230 Phone (503)255-5050 • Fax (503)255-0505 www.horizonengineering.com

Project No. 3302 Permit No. 11656

SOURCE EVALUATION REPORT

Saint-Gobain Containers, Inc. Seattle, Washington

Glass Melting Furnace No. 4
Total Chrome

August 4, 2009

Test Site:
Saint-Gobain Containers, Inc.
5801 East Marginal Way S.
Seattle, Washington 98134

TABLE OF CONTENTS

		Page Number
1.	CERTIFICATION	4
2.	INTRODUCTION	5
3.	SUMMARY OF RESULTS	6
4.	SOURCE DESCRIPTION AND OPERATION	8
5.	SAMPLING AND ANALYTICAL PROCEDURES	10
6.	DISCUSSION	11

APPENDIX	Page Number
Abbreviations & Acronyms	12
Nomenclature	14
Total Chrome	
Total Chrome and Flow Rate Results	15
Example Calculations	19
Field Data	24
Sample Recovery Field Data and Worksheets	27
Laboratory Results and COC	29
Traverse Point Locations	44
Tedlar Bag Field Data and Analyzer Calibration Data	45
Production/Process Data	
Furnace Operating Data	47
Calibration Information	
Meter Box	48
Calibration Critical Orifices	51
Standard Meter	53
Pitots	54
Thermocouples and Indicators	55
Nozzle Diameters	63
Barometer	64
Calibration Gas Certificates	65
QA/QC Documentation	
Procedures	69
Analyzer Interference Response Data	72
Correspondence	
Source Test Plan and Correspondence	74
Permit (Selected Pages)	79

1. CERTIFICATION

1.1 Test Team Leader

I hereby certify that the test detailed in this report, to the best of my knowledge, was accomplished in conformance with applicable rules and good practices. The results submitted herein are accurate and true to the best of my knowledge.

Name: Paul T. Heffernan,

Signature

Date

1.2 Report Review

I hereby certify that I have reviewed this report and find it to be true and accurate, and in conformance with applicable rules and good practices, to the best of my knowledge.

Name: David Bagwell, QSTI

Signature

Date

1.3 Report Review

I hereby certify that I have reviewed this report and find it to be true and accurate, and in conformance with applicable rules and good practices, to the best of my knowledge.

Name: Michael E. Wallace, PE

Signature

_____ Date 9/15/09

2. INTRODUCTION

2.1 Test Site: Saint-Gobain Containers, Inc.

5801 East Marginal Way S. Seattle, Washington 98134

2.2 Mailing Address: 1509 S. Macedonia Avenue

P.O. Box 4200

Muncie, IN 47307-4200

2.3 Test Log:

Glass Furnace No. 4, Exhaust: Total Chrome

Test Date	Run No.	Test Time
August 4, 2009	1	09:16 - 11:28
11	2	11:43 - 13:49
u	3	14:06 - 16:15

Summary: Three valid 120-minute runs

2.4 Test Purpose: To demonstrate compliance with the National Emission Standard for Hazardous Air Pollutants for Glass Manufacturing Area Sources, 40 CFR Part 63, Subpart SSSSS for affected sources.

2.5 Background Information: None

2.6 Participants:

Horizon Personnel:

Paul T. Heffernan, Team Leader

Neil A. Young, Field Technician

Michael E. Wallace, PE, Calculations and QA/QC

David Bagwell, QSTI, Report Review

Christopher D. Lovett, Technical Writer

Test Arranged by: Jayne Browning, Saint-Gobain Containers, Inc.

Observers:

Plant Personnel: Marlon Trigg, Saint-Gobain Containers, Inc.

Agency Personnel: Gerry Pade, PSCAA

Test Plan Sent to:

PSCAA: Gerry Pade

USEPA Region 10: Madonna Narvaez

3. SUMMARY OF RESULTS

3.1 Table of Results:

Table 1

Furnace No. 4 – Total Chrome Test Results

Test Date: August 4, 2009					
Sampling Results	Units	Run 1	Run 2	Run 3	Average
Start Time		09:16	11:43	14:06	
End Time		11:28	13:49	16:15	
Sampling Time	minutes	120	120	120	120
Sampling Results					
Total Chrome					
Concentration	μg/dscm	374	368	372	371
Rate	lb/hr	0.022	0.023	0.022	0.022
Production-Based	lb/ton	0.0039	0.0041	0.0039	0.0040
Subpart SSSSS Limit	lb/ton				0.02
Sample Volume	dscf	72.9	76.9	72.0	73.9
Sample Volume	dscm	2.1	2.2	2.0	2.1
Percent Isokinetic	%	97	89	95	94
Sample Weight, Total	μg	771	801	759	777
O_2	%	15.4	16.2	16.4	16.0
CO ₂	%	4.3	4.1	3.4	3.9
Source Parameters					
Flow Rate (Actual)	acf/min	26,800	28,900	27,000	27,600
Flow Rate (Standard)	dscf/min	15,700	16,700	15,800	16,100
Temperature	°F	383	395	383	387
Moisture ,	%	6.8	6.5	6.7	6.7
Process/Production Data					
Glass Pull Rate	ton/hr	5.66	5.66	5.66	5.66

3.2 Discussion of Errors and Quality Assurance Procedures: This table is taken from a paper entitled "Significance of Errors in Stack Sampling Measurements," by R.T. Shigehara, W.F. Todd and W.S. Smith. It summarizes the maximum error expressed in percent, which may be introduced into the test procedures by equipment or instrument limitations.

Measurement	% Max Error			
Stack Temperature Ts	1.4			
Meter Temperature Tm	1.0			
Stack Gauge Pressure Ps	0.42			
Meter Gauge Pressure Pm	0.42			
Atmospheric Pressure Patm	0.21			
Dry Molecular Weight Md	0.42			
Moisture Content Bws (Absolute)	1.1			
Differential Pressure Head ΔP	10.0			
Orifice Pressure Differential ΔH	5.0			
Pitot Tube Coefficient Cp	2.4			
Orifice Meter Coefficient Km	1.5			
Diameter of Probe Nozzle Dn	0.80			

3.2.1 <u>Manual Methods</u>: QA procedures outlined in the test methods were followed, including equipment specifications and operation, calibrations, sample recovery and handling, calculations and performance tolerances.

On-site quality control procedures include pre- and post-test leak checks on trains and pitot systems. If pre-test checks indicate problems, the system is fixed and rechecked before starting testing. If post-test leak checks are not acceptable, the test run is voided and the run is repeated. The results of the quantifiable QA checks for the test runs are on the Field Data sheets.

Horizon does semi-annual calibrations on pitots, thermocouples, and nozzles. Pitots are examined before and after each use to confirm that they are still aligned. Pitot systems are leak-checked before traverses begin, and after runs are completed (before any component disassembly). The results were within allowable tolerances. Prior to use, thermocouple systems are checked for ambient temperature before heaters are started or readings are taken. Problems with connections or polarity are obvious from these and readings as temperatures rise. Thermocouples are relatively permanent and rarely go out of calibration.

3.2.2 <u>Tedlar Bag Gas Sampling and Analysis</u>: The QA procedures from EPA Method 3/3A in <u>Title 40 CFR Part 60</u>, Appendix A, July, 2007 were followed for gas sampling and analysis. Analyzer system checks are noted on the Calibration Field Record sheet, with procedures documented in the QA/QC section of the Appendix. All calibration standards used in the testing were EPA Protocol 1 with the exception of ambient air that was used to span the oxygen analyzer. Gas certificates are in the Appendix.

4. SOURCE DESCRIPTION AND OPERATION

4.1 Process and Control Device Description and Operation:

There are four glass-melting furnaces at the site. Furnace No. 4 is an end-port regenerative furnace and is air-fuel fired, also utilizing natural gas as its primary fuel source. As a regenerative furnace, its increased fuel efficiency is realized by utilizing the heat generated in the combustion process to preheat the air and fuel used in further combustion processes. Additionally, increased thermal efficiency is realized by the regenerative furnace in providing heat to the primary glass-melting process itself.

Production records including raw materials, glass produced and fuel usage data are included in the Appendix

4.2 Test Ports: The exhaust duct of Furnace No. 4 is tapered at an angle of 5°. However, the duct can be considered straight for the purpose of meeting EPA Method 1 criteria as discussed in the EPA document, "Guidelines for Sampling in Tapered Stacks," by T.J. Logan and R.T. Shigehara (1978). According to this document, if the angle of the stack wall taper is less than 15° the duct is to be considered straight. The duct was sampled using the maximum number of traverse points indicated in EPA Method 1, 11.2.2, Figure 1-1.

4.2.1 Test Duct Characteristics:

Construction: Steel

Shape: Circular

Size: 40.25 inches inside diameter

Orientation: Vertical

Flow straighteners: None

Extension: None

Cyclonic Flow: No Cyclonic flow expected

Meets EPA Method 1 Criteria: Yes

- 4.2.2 Cyclonic Flow Check: Cyclonic flow checks were done at the exhaust of Furnace 4 during previous testing on September 22, 2005. During the cyclonic flow check, null angles were measured using a digital protractor and it was verified that the average angle of flow was less than twenty degrees from vertical, thus indicating the absence of cyclonic flow.
- 4.3 Operating Parameters: See Production/Process Data section of Appendix. Confidential batch composition information will not be included in the official report, but will be provided to PSCAA as a supplementary enclosure.
- 4.4 Process Startups/Shutdowns or Other Operational Changes

 During Tests: Process was continuous during testing.

5. SAMPLING AND ANALYTICAL PROCEDURES

5.1 Sampling Procedures:

5.1.1 Sampling and Analytical Methods: Testing was in accordance with procedures and methods listed in the Source Test Plan dated June 24, 2009 (see Correspondence Section in the Appendix), including the following: EPA Methods in 40 CFR Part 60, Appendix A, July 1, 2007.

Flow Rate: EPA Methods 1 and 2 (pitot traverses with EPA Method 29)

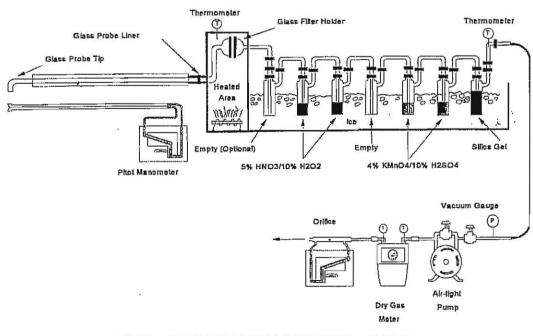
CO₂ and O₂: EPA Method 3/3A (integrated bag samples w/analyzers)

Moisture: EPA Method 4 (incorporated with EPA Method 29)

Chrome: EPA Method 29 (isokinetic impinger technique with analysis

by ICP-OES/ICP-MS)

5.1.2 Sampling Notes: None


5.1.3 Laboratory Analysis:

Analyte Laboratory

Chrome Columbia Analytical Services, Kelso, WA

5.2 Sampling Train Diagram:

Figure 1
EPA Method 29 Chrome Sample Train Diagram

****** HORIZON ENGINEERING ******

).).

5.2.1 <u>Diagram Exceptions</u>: Impingers 4, 5 and 6 were not used (not necessary unless mercury is to be tested)

5.3 Horizon Test Equipment:

5.3.1 Manual Methods:

Equipment Name	Identification
Isokinetic Meter Box	CAE Express, Horizon No. 19
Inclined Liquid Manometer	Incorporated with meter box
Probe Liner(s)	Borosilicate Glass
Pitots and Thermocouples	5-16, 5-17
Quartz Nozzles	Q2, Q3
Barometer	Test Van IV

5.3.2 CEM Analyzers and Methods:

Gas	Brand	Model	Cal. Span	Measurement Method	Method
O_2	Servomex	1400	20.95%	Paramagnetic	3/3A
CO ₂	Servomex	1400	21.76%	Chopperless NDIR	3/3A

5.3.3 Bag Sampling Setup:

Integrated Tedlar bag samples were taken from the orifice exhaust of the isokinetic meter boxes used for particulate determinations. The bag contents were then analyzed using the instruments listed above.

6. DISCUSSION

The results of the testing should be valid in all respects. All quality assurance checks including leak checks, instrument checks, and calibrations, were within method-allowable tolerances.

APPENDIX

Abbreviations & Acronyms

Abbreviations and Acronyms Used in the Report

AAC Atmospheric Analysis & Consulting, Inc. BAAQMD Bay Area Air Quality Management District Best Achievable Control Technology BACT

BHP Boiler Horsepower

Boiler and Industrial Furnace BIF

BLS Black Liquor Solids

C Carbon C₃H₈ Propane

CAS Columbia Analytical Laboratory CEM Continuous Emissions Monitor

CEMS Continuous Emissions Monitoring System CERMS Continuous Emissions Rate Monitoring System

CET Calibration Error Test **CFR** Code of Federal Regulations

CGA Cylinder Gas Audit

CH₄ Methane Cl2 Chlorine

CIO2 Chlorine Dioxide

CNCG Concentrated Non-Condensable Gas

CO Catalytic Oxidizer CO₂ Carbon Dioxide COC Chain of Custody CTM Conditional Test Method

CTO Catalytic Thermal Oxidizer DNCG Dilute Non-Condensable Gas

Dioxins Polychlorinated Dibenzo-p-dioxins (PCDD's)

dscf Dry Standard Cubic Feet EIT Engineer in Training

EPA Environmental Protection Agency

ESP Electrostatic Precipitator

EU **Emission Unit**

FID Flame Ionization Detector

Furans Polychlorinated Dibenzofurans (PCDF's)

GC Gas Chromatography

gr/dscf Grains Per Dry Standard Cubic Feet

H₂S Hydrogen Sulfide HAP Hazardous Air Pollutant Hydrogen Chloride HCI

Heat Recovery Steam Generator HRSG

Idaho Department of Environmental Quality **IDEQ**

Pounds Per Hour lb/hr

LRAPA Lane Regional Air Protection Agency Maximum Achlevable Control Technology MACT Methylene Diphyenyl Diisocyanate MDI

MDL

Method Detection Limit MEK Methyl Ethyl Ketone

MeOH Methanol

MMBtu Million British Thermal Units MRL Method Reporting Limit Mass Spectrometry MS MSF Thousand Square Feet

National Council for Air and Steam Improvement **NCASI**

NCG Non-condensable Gases

Abbreviations and Acronyms Used in the Report

NCUAQMD North Coast Unified Air Quality Management District

NDIR Non-dispersive Infrared

NESHAP National Emissions Standards for Hazardous Air Pollutar
NIOSH National Institute for Occupational Safety and Health
NIST National Institute of Standards and Technology
NMVOC Non-Methane Volatile Organic Compounds

NO_x Nitrogen Oxides

NPD Nitrogen Phosphorus Detector

O₂ Oxygen

ODEQ Oregon Department of Environmental Quality

ORCAA Olympic Region Clean Air Agency
PAHs Polycyclic Aromatic Hydrocarbons
PCWP Plywood and Composite Wood Products

PE Professional Engineer
PM Particulate Matter

Parts Per Billion by Volume vdqq Parts Per Million by Volume vmqq PS Performance Specification PSCAA Puget Sound Clean Air Agency PSEL Plant Site Emission Limits pounds per square inch psi PTE Permanent Total Enclosure PTM Performance Test Method

QA/QC Quality Assurance and Quality Control
QSTI Qualified Source Testing Individual

RA Relative Accuracy
RAA Relative Accuracy Audit

RACT Reasonably Available Control Technology

RATA Relative Accuracy Test Audit

RM Reference Method

RTO Regenerative Thermal Oxidizer
SCD Sulfur Chemiluminescent Detector
SCR Selective Catalytic Reduction System

SO₂ Sulfur Dioxide SOG Stripper Off-Gas

SWCAA Southwest Clean Air Agency

TAP Toxic Air Pollutant

TCA Thermal Conductivity Analyzer TCD Thermal Conductivity Detector

TGNMOC Total Gaseous Non-Methane Organic Compounds

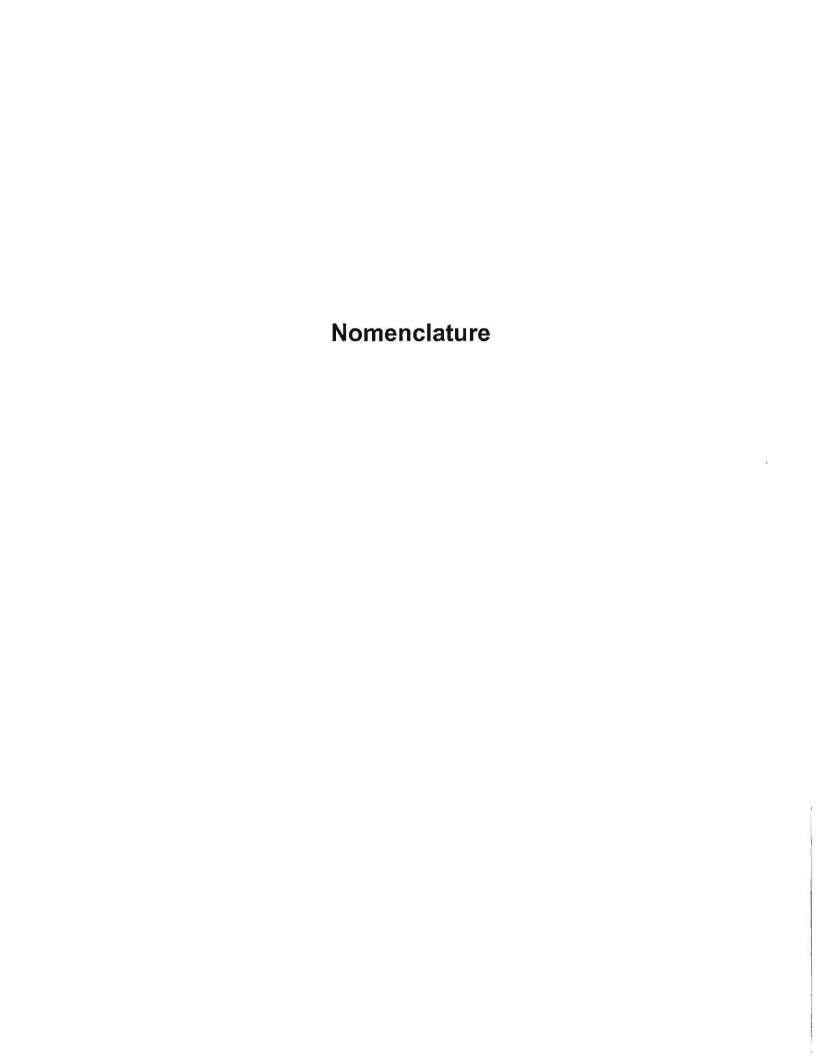
TGOC Total Gaseous Organic Compounds

THC Total Hydrocarbon

TIC Tentatively Identified Compound

TO Thermal Oxidizer

TO Toxic Organic (as in EPA Method TO-15)


TPH Tons Per Hour
TRS Total Reduced Sulfur
TTE Temporary Total Enclosure

VE Visible Emissions

VOC Volatile Organic Compounds

WC Inches Water Column

WDOE Washington Department of Ecology
WWTP Waste Water Treatment Plant

Nomenclature

Constants	Value	Units	Definition	Ref
Pstd(1)	29.92126	inHg	Standard Pressure	CRC
Pstd(2)	2116.22	lbf / R ²		CRC
Tstd	527.67	°R	Standard Temperature	CRC
R	1545.33	ß lbf / lbmol °R	Ideal Ges Constant	CRC
MWatm	28,965	Ibm / Ibmole	Atmospheric (20.946 %O2, 0.033% CO2, Balance N2+Ar)	
MWc	12.011	Ibm / Ibmole	Carbon	CRC
MWco				CRC
	28,010	lbm / lbmole	Carbon Monoxide	42336320
MWco2	44.010	Ibm / Ibmole	Carbon Dioxide	CRC
MWh2o	18.015	lbm / lbmole	Water	CRC
MWno2	46.006	lbm / lbmole	Nitrogen Dioxide	CRC
MWo2	31.999	Ibm / Ibmole	Oxygen	CRC
MWso2	64.063	lbm / lbmole	Sulfur Dioxide	CRC
MWn2+ar	28.154	lbin / lbinole (Balance with 98.82% N2 & 1.18% Ar)	Emission balance	
C1	385,3211	ft³ / lbmol	Ideal Gas Constant @ Standard Conditions	
C2	816.5455	inHg in²/ °R fi²	Isokentics units correction constant	
Kp	5129.4	ft / min [(inHg lbm/mole) / (*R inH2O)] ^1/4	Pitot rube constant	Ref 2.5.1
Symbol	Units	Definition		
			Calculating Equation or Source of Data	EPA
As	in ²	Area, Stack		
An	in²	Area, Nozzle		car temp
Bws	%	Moisture, % Stack gas	[100 Vw(std) / [Vw(std)+Vm(std)]]	Eq. 5-3
C	ppmv-C	Carbon (General Reporting Basis for Organics)		
C1	ft3/Ibmol	Gas Constant @ Standard Conditions	[R Tstd / Pstd(2)]	
C2	inHg in ² / °R ft ²		[14,400 Pstd / Tstd]	
Cd	lbm-GAS / MMdscf	Mass of gas per unit volume	[Cgas MWgas / Cl]	
cg	gr/dscf	Grain Loading, Actual	[15.432 mn / Vm(std) 1,000]	Eq. 5-6
cg @ X%CO2	gr/dscf	Grain Loading Corrected to X% Carbon Dioxide		Lq. 5-0
	**		[X% / CO2%]	
cg @ X%O2	gr/dscf	Grain Loading Corrected to X% Oxygen	[(20.946-X) / (20.946-O2)]	
Cgas	ppmv, %	Gas Concentration, (Corrected)		
Cgas @ X%CO2	ppmv	Gas Concentration Correction to X% Carbon Dioxide	[X% / CO2%]	
Cgas @ X%O2	ppmv	Gas Concentration Correction to X% Oxygen	[(20.946-X%) / (20.946-O2%)]	
Cgas	ppmv		Mgas (lbm/hr) * 1,000,000*385.3211/60*Qsd*mw	
CO	ppmv	Carbon Monoxide		
Co	n	Outer Circumference of Circular Stack		
Ci	ft	Inner Circumference of Circular Stack		
CO2	%	Carbon Dioxide		
Ср	, •	Pitot tube coefficient		
Ct	lb/lır		1.60 0-4/7.0007	
		Particulate Mass Emissions	[60 cg Qsd/ 7,000]	
dH	in H2O	Pressure differential across orifice		
Dn	in	Diameter, Nozzle		
dp^1/2		Average square root of velocity pressure		
Ds	in	Diameter, Stack		
E	lb / MMBtu	Pollutant Emission Rate	Cgas Fd MWgas (20.946 / (20.946-O2)) / (1,000,000 C1)	
Fd	dscf/MMBtu	F Factor for Various Fuels		Table 19-1
I	%	Percent Isokinetic	[C2 Ts(abs) Vm(std) / (vs Ps mfg An Ø)]	Eq. 5-8*
Md	lbm / lbmole	Molecular weight, Dry Stack Gas	[(1-%O2-%CO2)(MWn2+ar)+(%O2 MWo2)+(%CO2 MWco2)	- 1777 127 C
mfg	ioni i tomore	Mole fraction of dry stack gas	[1-Bws/100]	, 24. 5 .
Mgas	lbm/hr	Gaseous Mass Emisisons		
			[60 Cgas(ppmv) MW Pstd(2) Qsd / 1,000,000 R Tstd]	
mn	mg	Particulate lab sample weight		5 0 4
Ms	ibm / lbmole	Molecular weight, Wet Stack	[Md mfg +MWh2o (1-mfg)]	Eq. 2-5
MW	lbm / lbmole	Molecular Weight		
NO2	ppmv-NO2	Nitrogen Dioxide (General Reporting Basis for NOx)		
NOx	ppmv-NO2	Nitrogen Oxides (Reported as NO2)		
O2	%	Oxygen		
OPC	%	Opacity		
Pbar	in Hg	Pressure, Barometric		
Pg	in H2O	Pressure, Static Stack		
Po	in Hg	Pressure, Absolute across Orifice	[Pbar + dH / 13.5951]	
Ps	in Hg		Annual Control of Cont	En 2 6#
1.9	DI CIV	Pressure, Absolute Stack	[Pbar ÷ Pg / 13.5951]	Eq. 2-6*
Ο.			[As vs / 144]	
Qa O	acf/min	Volumetric Flowrate, Actual		
Qsd	acf/min dscf/min	Volumetric Flowrate, Actual Volumetric Flowrate, Dry Standard	[Qa Tstd mfg Ps] / [Pstd(1) Ts(abs)]	Eq 2-10*
Qsd Rf	acf/min dscf/min MMBtu/hr	Volumetric Flowrate, Dry Standard	[Qa Tstd mfg Ps] / [Pstd(1) Ts(abs)] 1,000,000 Mgas (20.946-O2)] / [Cd Fd 20.946]	Eq 2-10*
Qsd	acf/min dscf/min		[Qa Tstd mfg Ps] / [Pstd(1) Ts(abs)]	Eq 2-10*
Qsd Rf	acf/min dscf/min MMBtu/hr	Volumetric Flowrate, Dry Standard	[Qa Tstd mfg Ps] / [Pstd(1) Ts(abs)]	Eq 2-10*
Qsd Rf SO2	acf/min dscf/min MMBtu/hr ppmv-SO2	Volumetric Flowrate, Dry Standard Sulfur Dioxide	[Qa Tstd mfg Ps] / [Pstd(1) Ts(abs)]	Eq 2-10*
Qsd Rf SO2 t	acf/min dscf/min MMBtu/hr ppmv-SO2 in	Volumetric Flowrate, Dry Standard Sulfur Dioxide Wall thickness of a stack or duct Total Gaseous Organic Concentration (Reported as C)	[Qa Tstd mfg Ps] / [Pstd(1) Ts(abs)]	Eq 2-10*
Qsd Rf SO2 t TGOC Tm	acf/min dscf/min MMBtu/hr ppmv-SO2 in ppmv-C	Volumetric Flowrate, Dry Standard Sulfur Dioxide Wall thickness of a stack or duct Total Gaseous Organic Concentration (Reported as C) Temperature, Dry gas meter	[Qa Tstd mfg Fs] / [Pstd(1) Ts(abs)] 1,000,000 Mgas (20.946-O2)] / [Cd Fd 20.946]	Eq 2-10*
Qsd Rf SO2 t TGOC Tm Tm(abs)	acf/min dscf/min MMBtu/hr ppmv-SO2 in ppmv-C *F	Volumetric Flowrate, Dry Standard Sulfur Dioxide Wall thickness of a stack or duct Total Gaseous Organic Concentration (Reported as C) Temperature, Dry gas meter Temperature, Absolute Dry Meter	[Qa Tstd mfg Ps] / [Pstd(1) Ts(abs)]	Eq 2-10*
Qsd Rf SO2 t TGOC Tm Tm(abs)	acf/min dscf/min MMBtu/hr ppmv-SO2 in ppmv-C °; °R °F	Volumetric Flowrate, Dry Standard Sulfur Dioxide Wall thickness of a stack or duct Total Gaseous Organic Concentration (Reported as C) Temperature, Dry gas meter Temperature, Absolute Dry Meter Temperature, Stack gas	[Qa Tstd rufg Fs] / [Pstd(1) Ts(abs)] 1,000,000 Mgas (20.946-O2)] / [Cd Fd 20.946]	Eq 2-10*
Qsd Rf SO2 t TGOC Tm Tm(abs) Ts Ts(abs)	acf/min dscf/min MMBtu/hr ppmv-SO2 in ppmv-C °;; °R °F	Volumetric Flowrate, Dry Standard Sulfur Dioxide Wall thickness of a stack or duct Total Gascous Organic Concentration (Reported as C) Temperature, Dry gas meter Temperature, Absolute Dry Meter Temperature, Stack gas Temperature, Absolute Stack gas	[Qa Tstd mfg Fs] / [Pstd(1) Ts(abs)] 1,000,000 Mgas (20.946-O2)] / [Cd Fd 20.946]	Eq 2-10*
Qsd Rf SO2 t TGOC Tm Tm(abs) Ts Ts(abs) Vic	acf/min dscf/min MMBtu/hr ppmv-SO2 in ppmv-C °F °R °F °R ml	Volumetric Flowrate, Dry Standard Sulfur Dioxide Wall thickness of a stack or duct Total Gaseous Organic Concentration (Reported as C) Temperature, Dry gas meter Temperature, Absolute Dry Meter Temperature, Stack gas Temperature, Absolute Stack gas Volume of condensed water	[Qa Tstd rufg Fs] / [Pstd(1) Ts(abs)] 1,000,000 Mgas (20.946-O2)] / [Cd Fd 20.946]	Eq 2-10*
Qsd Rf SO2 t TGOC Tm Tm(abs) Ts Ts(abs) Vic	acf/min dscf/min MMBtu/hr ppmv-SO2 in ppmv-C °F °R °F °R ml dcf	Volumetric Flowrate, Dry Standard Sulfur Dioxide Wall thickness of a stack or duct Total Gaseous Organic Concentration (Reported as C) Temperature, Dry gas meter Temperature, Absolute Dry Meter Temperature, Stack gas Temperature, Absolute Stack gas Volume of condensed water Volume, Gas sample	[Qa Tstd mfg Fs] / [Pstd(1) Ts(abs)] 1,000,000 Mgas (20.946-O2)] / [Cd Fd 20.946]	25 200
Qsd Rf SO2 t TGOC Tm Tm(abs) Ts Ts(abs) Vic	acf/min dscf/min MMBtu/hr ppmv-SO2 in ppmv-C °F °R °F °R ml	Volumetric Flowrate, Dry Standard Sulfur Dioxide Wall thickness of a stack or duct Total Gaseous Organic Concentration (Reported as C) Temperature, Dry gas meter Temperature, Absolute Dry Meter Temperature, Stack gas Temperature, Absolute Stack gas Volume of condensed water	[Qa Tstd rufg Fs] / [Pstd(1) Ts(abs)] 1,000,000 Mgas (20.946-O2)] / [Cd Fd 20.946]	Eq. 5-1
Qsd Rf SO2 t TGOC Tm	acf/min dscf/min MMBtu/hr ppmv-SO2 in ppmv-C °F °R °F °R ml dcf	Volumetric Flowrate, Dry Standard Sulfur Dioxide Wall thickness of a stack or duct Total Gaseous Organic Concentration (Reported as C) Temperature, Dry gas meter Temperature, Absolute Dry Meter Temperature, Stack gas Temperature, Absolute Stack gas Volume of condensed water Volume, Gas sample	[Qa Tstd mfg Fs] / [Pstd(1) Ts(abs)] 1,000,000 Mgas (20.946-O2)] / [Cd Fd 20.946]	25 200
Qsd Rf SO2 t TGOC Tm Tm(abs) Ts Ts(abs) Vic Vm Vm(std)	acf/min dscf/min MMBtu/hr ppmv-SO2 in ppmv-C °F °R °F °R ml dcf dscf	Volumetric Flowrate, Dry Standard Sulfur Dioxide Wall thickness of a stack or duct Total Gaseous Organic Concentration (Reported as C) Temperature, Dry gas meter Temperature, Absolute Dry Meter Temperature, Stack gas Temperature, Absolute Stack gas Volume of condensed water Volume, Gas sample Volume, Dry standard gas sample Velocity, Stack gas	[Qa Tstd mfg Fs] / [Pstd(1) Ts(abs)] 1,000,000 Mgas (20.946-O2)] / [Cd Fd 20.946] [Tm + 459.67] [Ts + 459.67] [Y Vm Tstd Po]/ [Pstd(1) Tm(abs)]	Eq. 5-1 Eq. 2-9*
Qsd Rf SO2 t TGOC Tm Tm(nbs) Ts Ts(abs) Vlc Vm Vm(std)	acf/min dscf/min MMBtu/hr ppmv-SO2 in ppmv-C °F °R °F R ml dcf dscf fpm	Volumetric Flowrate, Dry Standard Sulfur Dioxide Wall thickness of a stack or duct Total Gaseous Organic Concentration (Reported as C) Temperature, Dry gas meter Temperature, Absolute Dry Meter Temperature, Absolute Stack gas Temperature, Absolute Stack gas Volume of condensed water Volume, Gas sample Velocity, Stack gas Volume, Dry standard gas sample Velocity, Stack gas	[Qa Tstd mfg Fs] / [Pstd(1) Ts(abs)] 1,000,000 Mgas (20.946-O2)] / [Cd Fd 20.946] [Tm + 459.67] [Ts + 459.67] [Y Vm Tstd Po] / [Pstd(1) Tm(abs)] Kp Cp dp^4/s [Ts(abs) / (Ps Ms)] ^ ½	Eq. 5-1 Eq. 2-9* Eq. 5-2
Qsd Rf SO2 t TGOC Tm Tm(abs) Ts Ts(abs) Vlc Vm Vm(std) vs Vw(std) Y	acf/min dscf/min MMBtu/hr ppmv-SO2 in ppmv-C °F °R °F R ml dcf dscf fpm	Volumetric Flowrate, Dry Standard Sulfur Dioxide Wall thickness of a stack or duct Total Gaseous Organic Concentration (Reported as C) Temperature, Dry gas meter Temperature, Absolute Dry Meter Temperature, Stack gas Temperature, Absolute Stack gas Volume of condensed water Volume, Gas sample Volume, Dry standard gas sample Velocity, Stack gas	[Qa Tstd mfg Fs] / [Pstd(1) Ts(abs)] 1,000,000 Mgas (20.946-O2)] / [Cd Fd 20.946] [Tm + 459.67] [Ts + 459.67] [Y Vm Tstd Po] / [Pstd(1) Tm(abs)] Kp Cp dp^4/s [Ts(abs) / (Ps Ms)] ^ ½	Eq. 5-1 Eq. 2-9*

^{*} Based on equation.

Total Chrome

Total Chrome and Flow Rate Results
Example Calculations
Field Data
Sample Recovery Field Data and Worksheets
Laboratory Results and COC
Traverse Point Locations
Tedlar Bag Field Data and Analyzer Calibration Data

EPA Method 29 Chromium Results

Saint Gobain	Saint Gobain Aug 4, 2009									
No.4 Furnac	e Exhaust				ny,pth					
Seattle, WA					mew					
Vm(std)	dscf	72.88	76.87	71.96						
	dscm	2.06	2.18	2.04						
Q(std)	dscf/min	15,725	16,778	15,847						
Time	min	120.0	120.0	120.0	360.0					
Oxygen	%	16.60	16.60	16.60						
SAMPLE W	EIGHTS	Run 1	Run 2	Run 3	Average					
		ug	ug	ug	Upper Lower					
Chromium	ug	771.0	801.0	759.0	777.0					

EPA Method 29 Chromium Results

Saint Gobain					Aug 4, 2	009
No.4 Furnace Exhaust					ny,ptl	h
Seattle, WA					mew	
Vm(std)	dscf	72.88	76.87	71.96		
	dscm	2.06	2.18	2.04		
Q(std)	dscf/min	15,678	16,728	15,825		
Time	min	120.0	120.0	120.0		
Oxygen	%	15.42	16.20	16.42		
CONCENTRATIONS	-	Run 1	Run 2	Run 3	Averag	ge
		ug/m3	ug/m3	ug/m3	Upper	Lower
Chromium	ug/m3	373.61	367.96	372.47	371.35	
CONCENTRATIONS		Run 1	Run 2	Run 3	Averag	je
CORRECTED TO 7%O2		ug/m3	ug/m3	ug/m3	Upper	Lower
Chromium	ug/m3	943	1,081	1,148	1,057	

^{*}ITALIC indicates results are at or below detection limit.

EPA Method 29 Chromium Results

Saint Gobain	aint Gobain Aug 4, 2009							
No.4 Furnace E	xhaust		ny,pth					
Seattle, WA					mew			
Vm(std)	dscf	72.88	76.87	71.96				
	dscm	2.06	2.18	2.04				
Q(std)	dscf/min	15,678	16,728	15,825				
Time	min	120.0	120.0	120.0	360.0			
Oxygen	%	15.42	16.20	16.42				
Production rate	ton / hr	5.66	5.66	5.66				
MASS EMISSIONS		Run 1	Run 2	Run 3	Average	441		
		lbm/hr	lbm/hr	lbm/hr	Upper	Lower		
Chromium	lbm/hr	0.0219	0.0231	0.0221	0.0224			
PRODUCTION BASIS		Run 1	Run 2	Run 3	Average			
		lbm / ton	lbm / ton	lbm / ton	Upper	Lower		
Chromium	lbm / ton	0.00387	0.00407	0.00390	0.00395			
9								

^{*}ITALIC indicates results are at or below detection limit.

EPA Method 29 Flow Rate and Moisture Results

Client	Saint Gol	bain			Aug 4, 2009	Date
Source	No.4 Fur	nace Exhaust			ny,pth	Operator
Location	Seattle, V	VA			3302	Job#
Methods	EPA 1-4,				mew	Analysist/QA
Definitions	Symbol	Units	Run 1	Run 2	Run 3	Average
Date	3		Aug 4, 2009	Aug 4, 2009	Aug 4, 2009	Time Weighted
Time, Starting			9:16	11:43	14:06	
Time, Ending			11:28	13:49	16:15	
Volume, Gas sample	Vm	dcf	73.155	79.475	75.012	75.9
Temperature, Dry gas meter	Tm	°F	71.3	87.4	91.8	83.5
Temperature, Stack gas	Ts	°F	383.3	395.0	382.9	387.1
Temperature, Stack Dry Bulb	Tdb	°F	na	па	na	
Temperature, Stack Wet Bulb	Twb	°F	na	na	na	
Pressure differential across orifice	dH	in H2O	1.491	1.678	1.568	1.6
Average square root velocity pressure	dp^1/2	in H2O^1/2	0.744	0.796	0.749	
Diameter, Nozzle	Dn	in	0.2523	0.2625	0.2523	
Pitot tube coefficient	Cp		0.8124	0.8135	0.8124	
Dry gas meter calibration factor	Y		0.9962	0.9962	0.9962	
Pressure, Barometric	Pbar	in Hg	30.00	30.00	30.00	
Pressure, Static Stack	Pg	in H2O	-0.01	-0.01	-0.01	
Time, Total sample	Ø	min	120.0	120.0	120.0	120.0
Stack Area	As	in ²	1,256.6	1,256.6	1,256.6	
Nozzle Area	An	in²	0.0500	0.0541	0.0500	5
Oxygen		% O2	15.42	16.20	16.42	16.01
Carbon Dioxide		% CO2	4.27	4.10	3.43	3.93
Molecular weight, Dry Stack	Md	lbm / lbmole	29.42	29.43	29.33	29.39
Pressure, Absolute Stack	Ps	in Hg	30.00	30.00	30.00	30.00
Pressure, avg arcoss orifice	Po	in Hg	30.11	30.12	30.12	30.12
Volume of condensed water	Vlc	ml	113.4	113.4	109.4	
Volume, Dry standard gas sample	Vm(std)	dscf	72.88	76.87	71.96	73.90
Volume, Water Vapor	Vw(std)	scf	5.34	5.34	5.15	
Moisture, % Stack	Bws(1)	%	6.82	6.49	6.68	6.67
Moisture, % Stack (Psychometry-Sat)	Bws(2)	%	na	na	na	
Moisture, % Stack (Theoretical)	Bws(3)	%	na	na	na	
Moisture, % Stack (Psychometry)	Bws(4)	%	na	na	na	
Moisture, % Stack (Predicted)	Bws(5)	%	6.50	6.50	6.50	6.50
Mole Fraction dry Gas	mfg		93.2%	93.5%	93.3%	93.3%
Molecular weight, Wet Stack	Ms	lbm / lbmole	28.65	28.69	28.57	28.64
Velocity, Stack gas	vs	fpm	3,072	3,312	3,095	3,160
Volumetric Flowrate, Actual	Qa	acf/min	26,809	28,901	27,007	27,572
Volumetric Flowrate, Dry Standard	Qsd	dscf/min	15,678	16,728	15,825	16,077
Percent Isokinetic	I	%	97.4	88.9	95.3.	93.8
1 Grown Isonificate						

13585 NE Whitaker Way • Portland, OR 97230 Phone (503) 255-5050 • Fax (503) 255-0505 www.horizonengineering.com

Example Calculations
Client: Saint Gobain Source Fornace No. 4 Date 08/04/2009 Project # 3302 Run # 2
Date 08/04/2009 Project #3302 Run # 2_
Metals Emissions – Mass Rate
Metal Chrowe measured 80 0 µg
Sample Volume 76.97 dscf Flow Rate 16,778 dscf/min
Equation:
$lb - \underline{C\Gamma}/hr = \frac{measured\mu g * mg / 1000 \mu g}{SampleVolume} * FlowRate * \frac{60 \min}{hr} * \frac{lb}{453592.37mg}$
Calculation:
$\frac{8000 \mu g * mg/1000 \mu g}{46.97 dscf} * \frac{16778 dscf}{min} * \frac{60 min}{hr} * \frac{1b}{453592.37 mg} = 0.0234 lb-Cr/hi$

Sample Calculations, Additional Concentrations & Rates

	9.	LCI		Furnace	12 61
Client:	OGIA	t Gobain	Source	Urnace	100.
Date_08	3/04/09	Project # 3302	-Run#2_	<u>-</u>	

Chromium Emissions Production Based: lb/ton glass production:

Equation:
$$\frac{lbCr}{tonGlass} = \left(\frac{lbCr}{hr}\right) \times \left(\frac{day}{tonsGlass}\right) \times \left(\frac{24hr}{day}\right)$$

Calculation:
$$\left(\frac{O.0234}{hr}lbCr\right) \times \left(\frac{day}{135.9 tonsGlass}\right) \times \left(\frac{24hr}{day}\right) = \frac{0.0041}{tonGlass}lbCr$$

Client: Saint Gobain	Source	Furnace	16.4
Date 0 9 04 09 Project # 330 2	Run #_ 2		Page

CHROMIUM CONCENTRATION. mg/dscm

Measured Results, gr/dscf 0.000(6)

Equation:
$$CR$$
, $mg/dscm = Cr$, $gr/dscf \times \frac{lb}{7000gr} \times \frac{453,592mg}{lb} \times \frac{35.315cubicft}{cubicMeter}$

Calculation:
$$\frac{0.000161}{0.368} Cr, gr/dscf \times \frac{lb}{7000gr} \times \frac{453,592mg}{lb} \times \frac{35.315cubicft}{cubicMeter}$$

$$= \frac{0.368}{0.368} Cr, mg/dscm = 368 \frac{Mg}{0.368} Cr m$$

Client: Saint Goldin Date 08/04/2009
Source Furnace No. 4 Project # 3302

Molecular Weights (lb/lbmol):

CO ₂ =44.01	O ₂ =31.999	N ₂ +Ar=28.154	H ₂ O=18.015	atm=28.965
Constants				

Pstd(1)=29.92129 in Hg Tstd=527.67 °R Kp=5129.4 C2=816.5455inHq in²/°R ft²

Pressure, Absolute Stack (Ps):

Ps, inHg =
$$P_{\text{Barometric}} + \frac{P_{\text{static}}}{13.6} = \frac{30.0 \text{ inHg} + \frac{-0.01 \text{ in H2O}}{13.6}}{13.6} = \frac{30.0 \text{ inHg}}{13.6}$$

Volume, Dry Standard Gas Sample (Vm[std]):
$$Tm = 87.4 \circ F + 459.7 = 547.1 \circ R$$

Orifice Pr ess = Pb
$$30.0$$
 inHg + $\frac{1.678}{13.6}\Delta H = 30.12$ inHg

$$Vm(std)ft^{3} = \frac{Y \times MeterVol \times Tstd \times Orifice \Pr es(Po)}{Pstd(1) \times Tm \circ R}$$

$$= \frac{0.99618 \times 79.475 \, ft^3 \times 527.67 \circ R \times (Po \ 20.12 \ inHg)}{29.9213 inHg \times 547.1 \circ R} = \frac{76.875}{4scf} \, dscf$$

Moisture, % Stack Gas (bws):
$$V_{wstd} = 0.04707 \times Cond.H2O, ml = 0.04707 \times 13 \times 4 ml = 5.338 scf$$

bws = $100 \times \frac{V_{wstd}}{V_{wstd} + V_{mstd}} = \frac{5.338 scf + 76.875 dscf}{5.338 scf + 76.875 dscf} = 6.49 \%$

$$1 - \frac{\text{bws}}{100} = 1 - \frac{6a49}{100} = 0.935$$

Molecular Weight, Dry, Stack (Md):

$$Md\frac{lb}{lbmol} = \left[(1 - \frac{O_2}{100} - \frac{CO_2}{100}) \times MolWtN2Ar \right] + \left[\frac{O_2}{100} \times MolWtO2 \right] + \left[\frac{CO_2}{100} \times MolWtCO2 \right]$$

$$= \left[(1 - \frac{16 \cdot 2 \% O_{2}}{100} - \frac{4 \cdot 1 \% CO_{2}}{100}) \times 28.154 \frac{lb}{lbmol} \right] + \left[\frac{16 \cdot 2 \% O_{2}}{100} \times 31.999 \frac{lb}{lbmol} \right] + \left[\frac{4 \cdot 1 \% CO_{2}}{100} \times 44.010 \frac{lb}{lbmol} \right] = \frac{29 \cdot 43}{lbmol} \frac{lb}{lbmol}$$

Client: Saint (roboun

Date 08/04/2009

Molecular Weight, Wet, Stack (Ms):

$$Ms \frac{lb}{lbmol} = (Md \times mfg) + (MolWtH_2O \times (1 - mfg)) = \left(\frac{2943}{lbmol} \times \frac{0.9351}{lbmol}\right) + (18.015 \times (1 - 9351))$$

$$= \frac{20.69}{lbmol} \frac{lb}{lbmol}$$

Stack gas (vs):
$$Ts = 395 \circ F + 459.7 = 854.7 \circ R$$

$$= v_{S} \frac{feet}{\min} = Kp \times Cp \times dp \sqrt{inH_{2}O} \times \sqrt{\frac{Ts \circ R}{Ps \times Ms}}$$

$$=5129.4 \, ft/\min...\times \underbrace{0.8135}_{\times} \underbrace{0.796}_{t} \, dp\sqrt{inH_2O} \times \underbrace{\frac{0.54.7}_{0.0} \circ R}_{inHg\times29.67} \underbrace{\frac{1b}{lbmol}}_{lbmol} = \underbrace{\frac{3309.9}_{min}}_{min}$$

Flow Rate, Actual (Qa):

$$Qa \frac{actualCubicFeet}{\min} = \frac{AreaStack \times vs}{144} = \frac{|256.6 \text{ in}^2 \times 3309.9 \text{ ft}}{144} = \frac{ft}{\min} = 28.884 \text{ acfm}$$

Flow Rate, Dry Standard (Qsd):
$$Qsd \frac{dryStdFt^{3}}{min} = \frac{Qa \times Tstd \times mfg \times Ps}{Pstd(1) \times Ts \circ R} = \frac{20,894}{acfm \times 527.67 \circ R \times 0.9351 \times 30.0} inHg$$

$$1/2 7/9 dscf$$

Field Data Sheet

	علاد	. 1	13585 NE	Whitaker Way].			Client:	Sara	+ 60	bain			
Fax (501) 255-0015 Date Modern First		S						Plant:	Sutt	lejw	H			
Date Street February First Males Fir			2000 100000000	ACCIONATION AND AND AND AND AND AND AND AND AND AN										
Test Method 39 Post Test Post Po		7/1/10	Fax (503)	255-0505								ð.,		
Pista Lik Rate Press Hard					-			N. 1991.						
Name					-					nspectio				
Support Support Trib Trib Trib Trib Trib Trib Trib Trib Trib		ent Testing			-)				
Temperature, Ambient This This		- AlV	Support	DTH	_				and the same of the same					The second second second
Moleture 10	_				-	54		A Surveyor I	-	J_ {	-y -	The second		
Press, Shalic (Patally)_o Prest, Bar (Ph) SOC Colored C		-			•	£		CANADA WARAN	30x 19	dH@ /	18511		y 99	618
Cyclain Those Paper Cyclain Those Those Cyclain Those Those				ess., Bar (Pb) 30.0	<u></u>	Stack Dia	gram	Mete	er			COMPANY OF THE PARTY OF THE PAR		
Product Time Color Col							_	Leak Cl	heck		Post: 0	,005	2cfm / 2	2 inH ₁
				457				STACK	PROBE	,				
9:16 251.500 1 3 254.73 .65 1.51 1.5 370 247 257 53 67 68 2 1 10 267.96 .65 1.51 1.5 370 247 257 53 67 67 2 1 15 261.84 .96 2.24 2.2 377 252 257 53 67 69 2 2 10 265.53 .86).92 1.9 407 245 255 54 68 73 2 2 168.97 .70 1.57 1.6 414 250 251 55 68 76 2 2 10 275.08 .55 1.23 1.2 415 251 253 55 70 8/ 2 2 275.08 .55 1.23 1.2 415 251 253 55 70 8/ 2 2 277.90 .47 1.13 1.1 361 246 250 55 70 82 2 2 281.14 .58 1.36 1.4 377 244 257 55 72 83 2 2 81 287.46 .55 1.27 1.3 397 250 252 55 73 85 2 10 20 284.37 .58 1.35 1.4 387 248 252 54 72 83 2 2 87.46 .55 1.27 1.3 397 250 252 55 73 85 2 10 20 287.79 1.8 3.91 3.9 444 257 250 56 74 86 2 11 60 265 290.555 .55 1.25 1.3 444 257 250 56 77 57 5 2 30.46 1.3 3.00 3.0 400 249 257 55 77 57 5 3 30.543 1.5 3.43 3.4 413 257 258 56 78 93 55 3 317.20 .94 2.13 2.1 425 247 256 60 30 92 4 3 318.93 1.5 3.55 36 387 249 252 60 80 93 55 3 317.20 .94 2.13 2.1 425 247 257 60 381 90 2 10 322.72 .05 .135 .14 279 257 255 62 28 28 28 28 28 28 28 28 28 28 28 28 28	9500	min		cuft		100000000000000000000000000000000000000	ACTUAL		1.000	*F	*F	*F	*F	inifg
3		(at)	a·11		1		(011)							(PV)
251.96 .65 1.51 1.5 371 249 253 52 67 67 2 15			7.16			1		~	0.1-	0		100	10	
15 26 84 96 224 23 377 50 27 53 67 69 2	1	5		254.75	, 65	1,51	1.5	510	241	259	53	61	605	
10 265.53 .86 1.92 1.9 407.245 255 54 68 73 2 1.68.97 .70 1.57 1.6 414 250 251 55 68 76 2 2 2 2 2 2 2 2 2	2	10		257.96	.65	1.51	1.5	371	249	253	52	67	67	2
18	3	15		261.84	,96	2.24	2.2	377	252	257	53	67	69	2
10	4	20		265.53	-86	1.92	1.9	407	245	255	54	68	73	2
275.08	5	25		268.97	,70	1.57).le	414	250	251	55	68	76	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	30		272.14	,62	1.39	1.4	417	246	247	55	68		2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	35		275.08	,55	1,23	1.7			253	55	70	81	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	40		277.90	,47	1, 3	1.1	361	246	250	55	70	82	2
287.46 . 55 1.27 1.3 397 250 252 55 73 85 2 287.46 . 55 1.27 1.3 397 250 252 55 73 85 2 295.79 1.8 3.91 3.9 444 251 250 57 75 77 5 300.46 1.3 3.00 3.0 400 249 257 55 76 87 5 305.43 1.5 3.43 3.4 413 251 258 57 77 91 5 80 309.93 1.2 2.76 2.8 414 261 257 58 78 93 5 81 313.28 .65 1.51 1.5 401 247 256 58 79 93 5 82 313.28 .65 1.51 1.5 401 247 256 58 79 93 5 83 317.20 .94 2.13 2.1 425 247 255 60 80 93 5 83 320.69 .15 .355 .36 387 249 252 60 80 93 5 81 322.72 .05 .135 .14 279 251 255 62 87 22 10 322.72 .05 .135 .14 279 251 255 62 82 87 2	9	45		281.14	158	1.36	1.4	379	244	259	55	72	83	\mathcal{Q}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	50		284.37	,58	1,35	1,4	387	24/8	252	54	72	83	α
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	55		287.46	,55	1,27	1.3	397	250	252	55	73		2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	60	1028	290.555	.55	1,25	1.3	4/4	252	250	56	74	86	2
3	1	65		295.79	1.8	3.91	3.9	444	251	350	57	75	77	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	70			1.3			400	249	257	55	76	87	
5 85 313.28 (65 1.51 1.5 401 247 256 58 79 93 5 6 90 317.20 (94 2.13 2.1 425 247 255 60 80 92 4 7 95 318.93 (15 1355 , 36 387 249 252 60 80 93 5 8 100 320.69 , 15 , 355 , 36 388 248 255 63 81 90 2 9 105 321.73 , 07 , 169 , 17 372 249 254 61 82 89 2 10 110 322 72 .05 , 135 , 14 279 251 255 62 82 82 88 2 11 115 323.69 , 05 , 134 , 13 284 345 254 62 83 86 2	3	75		305.43	1,5	3.43	3.4		297	258		77	-	5
6 90 317.20 194 2.13 2.1 425247255 60 80 92 4 7 95 318.93 15 1355 36 387249 252 60 80 93 5 8 100 320.69 15 355,36 388 248 255 0381 90 2 9 105 321.73 07 169 17 372249 254 61 82 89 2 10 110 32272 05 135 14 279251 255 62 82 82 88 2 11 115 323.69 05 134 13 284245254 62 83 86 2 12 120 1128 324.655 05 134 13 282257 257 62 82 87 2	4	80		309.93	1.2		2.8	414	251	257		78		
7 95 318.93 ,15 ,355 ,36 387249 252 6080 93 5 8 100 320.69 ,15 ,355 ,36 388248 255 6381 90 2 9 105 321.73 ,07 ,169 ,17 372249 254 61 82 89 2 10 110 32272 .05 ,135 ,14 279251 255 62 82 82 88 2 11 115 323.69 ,05 ,134 ,13 284245254 6283 86 2 12 120 1128 324.655 ,05 ,134 ,13 282257 257 628287 2	5	85		313.28				401	247		58	79		
8 100 320.69 , 15 , 355 , 3(0 388 248 255 6381 90 2 9 105 321.73 , 07 , 169 , 17 372 249 254 61 82 89 2 10 110 32272 , 05 , 135 , 14 279 251 255 62 82 82 88 2 11 115 323.69 , 05 , 134 , 13 284 245 254 62 83 86 2 12 120 1128 324.655 , 05 , 134 , 13 282 257 257 62 82 87 2	6	90		317.20	,94	2.13		425	247	THE PERSON NAMED IN				
9 105 321.73 .07 .169 .17 372 249 254 61 82 89 2 10 110 32272 .05 .135 .14 279 251 255 62 82 88 2 11 115 323.69 .05 .134 .13 284 245 254 62 83 86 2 12 120 1128 324.655 .05 .134 .13 282 257 257 62 82 87 2	7	95		- 112	115	1355	,36	387	249	252				
10 110 32272 .05 .135 .14 279251255 628288 2 11 115 323.69 .05 .134 .13 284245254 6283 86 2 12 120 1128 324.655 .05 .134 .13 282257 257 628287 2	8	100	-8	320.59	,15	, 355	,3(o	388		-	63	•		
11 115 323.69 105 134 13 284245254628386 2 12 120 1128 324.655 105 134 13 282257 257 628287 2	9	105		321.73	.07	,169	117	372	249	254	61	32	89	
12 120 1128 324.655 , 05 , 134 , 13 282 257 257 62 82 87 2	10	110			.05		514	-		255				
	11	115			105	,134		284	245	254				
	12	120	1128	324.655	,05	. 134	./3	282	257	257	62	82	87	2
	Notes:			*										24

Field Data Sheet

13585 NE Whitaker Way Portland, OR 97230 Phone (503) 255-5050 Fax (503) 255-0505

Date & Test Method 29 Concurrent Testing Run# 7 Operator NY Support PTH Temperature, Ambient (Ta) 80 Moisture 6.5% Tdb Press Static (Pstat) - 01 Press Ray (Ph) 700 Client: Said Gobain Plant: Seattle, WA Location: Fy Sample Location: Ex. T

Probe 5-16 (g/s) Cp , 8135 Heat Set 250 Post-Test Pitot Inspection (NC=no change, D=damaged) Pitot Lk Rate 0@3 Post. 0@3 Pre: Hi in H2O@in H2O Lo 0@3 00

Nozzle . 2625 02 Sample Box Filter Heat Set 750

Y . 97618

Meter Box 19 dH@ / 85/11

WIDISTUFE	(Q.P) /	O rub	- 1WD -	=			Meter	301 17	unw	100	!/	1 ,7	7616
			ress., Bar (Pb) 30.C		Stack Dia	agram	Mete	er		Pretest:	O-CXX	gelm /	5 inH
Cyclonic	Flow Expe	cted? No	_If yes, avg. null angle_	degrees			Leak Cl	heck		Post: O	·003	>cſm /	5 inH
Traverse	Sampling	Clock	Dry Gas Meter	Velocity Head	Orifice Pressure	Orifice Pressure	STACK	PROBE	OVEN	IMPINGER			
Point Number	Time tnin	Time (24 hr)	Reading cuft	in H2) (dPs)	in H2O DESTRED	H2O ACTUAL	*F	·F	Filter *F	Outlet *F	Inlet/Avg.	Outlet	Vacuum inHg
7.000.000.000	(dt)		(Vm)		State South Control of the State of the Stat	(dĤ)	(Ts)	(Tp)	(To)	(Ti)	(Tm-in)	(Trn-out)	
		1143	324.833			9	Amb:	Amb:	Amb:	Amb:	Amb:	Amb:	
1	5		330 -	1,8	4.02	4.0	429	240	250	63	83	81	9
2	10		335.60	1.8	4.01	4.0	438	48	252	62	83	56	9
3	15		340-	1,5	3.48	3.5	407	49	254	62	84	73	8
4	20		345.72	1.5	3.48	3.5	416	248	255	61	83	94	8
5	25		350.25	1.2	2.79	2.8	415	249	255	63	86	96	7
6	30		353.93	,72	1.69	1.7	401	246	252	63	84	94	7
7	35		356.08	.25	,582	158	396	247	251	64	82	89	2
8	40	-	358.17	.28	652	,65	403	248	25	62	32	87	2
9	45		359.97	,19	,442	.44	398	249	2.54	62	81	86	2
10	50		361.43	.12	,287	,29	373	247	254	63	81	86	2
11	55		362.74	.0	,246	,25	349	247	254	64	82	36	3
12	60	1243	363.969	.08	,214	.21	284	248	255	61		85	2
1	65		367.45	.64	1.56	1.6	360	247	252	62	81	85	5
2	70		371.18	,79	1.87	1.9	385	249	251	59	81	90	5
3	75		374.95	185	1.94	1.9	421	249	254	59	82	93	5.
4	80	*	378.60	,78	1.77	1,8	4260	24/8	255	58	83	95	6
5	85		381.99	165	1.46	1,5	433	246	253	58	\$3	960	6
6	90		384.85	.45	1.14	le1	332		253	55	84	96	5
7	95		387.42	,35	1855	, 76	365		259	61		96	4
8	100		390.50	,54	1.30	1,3	377	248	256	~_		95	3
9	105		393-	167	1.58	1-6	393	248	255	64	85	95	4
10	110		397.34	170	1.6/	1:6	412	247	254	65	35	97	5
11	115		400.80	,70	1.59	1-6	430		254			98	5
12	120	13:49	404.370	,70	1.59	1.Ce	438	246	355	66	86	77	5
						*							

Notes:

Leak check at port change 0.004@15

Field Data Sheet

13585 NE Whitaker Way Portland, OR 97230 Phone (503) 255-5050 Fax (503) 255-0505

Test Method 29 Concurrent Testing . Run#3 Operator NY Support PTH Temperature, Ambient (Ta) 80

Moisture 6.5% Tdb Press., Static (Pstat) - c) | Press., Bar (Pb) 30.0 Client: Saint Golain Plant: Seattle, WA Location: #4 Furnace Sample Location: Exit

Probe 5+17 (g/s) Cp. 8124 Heat Set 250

Post-Test Pitot Inspection (NC=no change, D=damaged)

Pitot Lk Rate Pre: Hi O@ 3 Post O@ 3 in H2O@in H2O Lo O@ 3

Nozzle , 2523 Sample Box 188 Filter Heat Set 250 °F Meter Box 19 dH@ x,99618

Moisture	CJE . P P			_			Meter I	NOX -	unw	183	[[[X , /	7610
Press., S	tatic (Pstat)	-, 01 P	ress., Bar (Pb) 30.0		Stack Dia	agram	Mete	er		Pretest:	0,00	3cfm /	5 inH
Cyclonic	Flow Expe	cted ? 10	_If yes, avg. null angle_	degrees			Leak C	heck		Post: C	0.00	2cfm /	5 inH
Traverse	Sampling	Clock	Dry Gas Meter	Velocity Head	Orifice Pressure	Orifice Pressure	STACK	PROBE	OVEN	IMPINGER			THE RESERVE THE PARTY OF THE PA
Point	Time	Time	Reading	in H2)	in H2O	H2O			Filter	Outlet	Inlet/Avg		Vacuum
Number	min (dt)	(24 hr)	cuft (Vm)	(dPs)	DESIRED	ACTUAL (dH)	°F (Ts)	*F (Tp)	*F (To)	Ti)	'F (Tm-in)	*F (Tm-out)	inHg (Pv)
	(-0	111101		1		, (4.1)	Amb:	Amb:	Amb:	Amb:	Amb:	Amb:	1 (1)
		14:06	404.575										
١,	5		408.08	164	157	115	380	249	246	100	84	85	
-	,		100	1071	1,24	1,7	300			W			2
2	10		411.35	,64	1.51	1.5	392	249	246	57	86	91	2
3	15		415.10	.85	1,95	2.0	415	247	254	60	86	92	2
4	20		418.63	.79	170	17	431	246	255	(01	36	96	2
	20	_	110.07	76	1, (1.0	+	-		6	-		
5	25		422.18	116	1,71	1.7	436	254	254	62	86	97	2
6	30		425.60	1,71	1.61.	1.6	434	253	255	63	88	99	2
7	35	3	428.71	.52	1.27	1.3	372	252	259	64	88	99	2.
p	40		431.68	49	117	1.2	386		253	65	88	99	2.
-			43495	100	142	1.4	395	248	252	63	88	98	2
9	45		101.10	,60	1110	1. 1				رایا	-	,	
10	50		438.20	,58	1,36	1.4	403	244	252	61	88	99	2
11	55		441.44	,58	1.36	1.4	409	238	363	60	25	99	2
12	60	1505	444.670	,60	1.36	1.4	432	250	256	60	29	99	Z
ı	65		450.00	1.8	4,00	4.0	447	236	259	60	87	90	3
2	70		454.72	1.3	3.04	3.0	403	249	152	55	88	95	3
3	75		459.95	1,6	371	3.7	413	250	254	57	88	98	3
			41.498	1,5	347	3.4	431		256	54	58	101	4
4	80		11016	1 -	21 12		10.11						
5	85		769.18	1.0	2.31	2.3	419	255	259	58	88	62	4
6	90		473.09	185	2.00	2.0	405	244	250	53	89	101	4
7	95		474.77	,14	,345	,35	362	247	251	59	89	100	4
В	100		476.10	109	,232	,23	328	251	254	62	89	98	2
9	105	CHI.	477.56	,06e	.161	.16		248	252		89	96	2
	110		478.24	,04	115		240	\rightarrow	258		87	93	2
10	110												_
п	115	12	478.98	,03	0.09				152	67	88	87	2
12	120	1615	479.703	,03	0.08	· 08	288	257	062	67	87	89	2
													2200

Notes:

405,978@ 2 min prelakcheck 406.094 Post Leak check

Pause @ 14:08 For Leak check Restarted @ 14:10

Sample Recovery

								Aug 4, 2009
								ny,pth
								mew
	Γ	Run	1	Run	2	_	Run 3	
	-	3	4	3	4	3	4	
nse #2								1
	g	124.0					454.0	
	g							
pinger	g	20.0		20.0		20.0		
% H2O2 / 5% HNO3	ml							1
KMnO4 / 10% H2SO4	ml						0.0	
N HNO3	ml		0.0		0.0		0.0	
0	ml						0.0	
HCL / H2O	ml						0.0	
ndensate	g		101.2		102.2		97.2	
nse	_ g	104.0	96.0	97.0	92.0	96.0	94.0	
						W 10		
N HNO3	gm	104.0	96.0			96.0	94.0	
	m1	103.8	95.8	96.8	91.9	95.8	93.8	ſ
% KMnO4	gm							
	ml							
% H2O2 / 5% HNO3	gm							ľ
	ml		200.0		200.0		200.0	l.
HCL / H2O	gm							
	ml							
al weight	g		532.0		531.0		532.0	
tial weight	g		520.0		520.0		520.0	
in	g		12.0		11.0		12.0	
	g							
t Moisture Gain	ml		113.4		113.4		109.4	
FFW 1 Clara	pinger, Contents, Condensate & Rinse pinger, Contents & Condensate pinger, Contents & Condensate pinger & H2O2 / 5% HNO3 KMnO4 / 10% H2SO4 N HNO3 CHCL / H2O Indensate ase N HNO3 KMnO4 KMnO4 H2O2 / 5% HNO3 HCL / H2O Al weight ial weight	pinger, Contents, Condensate & Rinse gringer, Contents & Condensate gringer gr	pinger, Contents, Condensate & Rinse g 20.0 pinger, Contents & Condensate g 20.0 pinger g 20.0 pinger g 20.0 ml KMnO4 / 10% H2SO4 ml N HNO3 ml MCL / H2O ml ml ml MCL / H2O ml ml ml MCL / H2O ml	pinger, Contents, Condensate & Rinse g 124.0 468.0 pinger, Contents & Condensate g 20.0 372.0 pinger g 20.0 59.0 MH202 / 5% HNO3 ml 200.0 KMnO4 / 10% H2SO4 ml 0.0	pinger, Contents, Condensate & Rinse g 124.0 468.0 117.0 pinger, Contents & Condensate g 20.0 372.0 20.0 pinger g 20.0 59.0 20.0 ml 200.0 KMnO4 / 10% H2SO4 ml 0.0	pinger, Contents, Condensate & Rinse pinger, Contents & Condensate g 20.0 372.0 20.0 364.0 20.0 20.0 364.0 20.0 372.0 20.0 364.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2	pinger, Contents, Condensate & Rinse pinger, Contents & Condensate g 20.0 372.0 20.0 364.0 20.0 20.0 20.0 364.0 20.0 20.0 372.0 20.0 364.0 20.0 20.0 20.0 364.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2	Description Property Proper

13585 NE Whitaker Way • Portland, OR 97230 Phone (503) 255-5050 • Fax (503) 255-0505 www.horlzonengineering.com

Client: St. Gobain			EPA Method 29 Mu	
Cheff. Of . Copp. N		oource.	10111000 11	
Run No.:	· Test	Date: <u>08</u>		
Container No.	Empty Container	Impinger Contents	grams Impinger Contents w/ Rinse	Additional Impinger Contents with Rinse
#1 Filter #3 Probe Rinse, HNO ₃ #4 HNO ₃ or HNO ₃ /H ₂ O ₂	20	372	124	
#5A, 0.1 N HNO ₃ # 5B KMNO ₄ /H ₂ SO ₄ /H ₂ O #5C 8N HCI / H ₂ O		527		
#6 Silica Gel	520	532	•	
Run No.:	Test	Date:	grams	
Container No.	Empty Container	Impinger Contents	Impinger Contents w/ Rinse	Additional Impinger Contents with Rinse
#1 Filter #3 Probe Rinse, HNO ₃ #4 HNO ₃ or HNO ₃ /H ₂ O ₂ #5A, 0.1 N HNO ₃	20 50	364	117 456	
# 5B KMNO ₄ /H ₂ SO ₄ /H ₂ O #5C 8N HCl / H ₂ O #6 Silica Gel	520	531		
Run No.:3 ,	Test	Date:		
Container No.	Empty . Container	Impinger Contents	grams Impinger Contents w/ Rinse	Additional Impinger Contents with Rinse
#1 Filter #3 Probe Rinse, HNO ₃ #4 HNO ₃ or HNO ₃ /H ₂ O ₂ #5A, 0.1 N HNO ₃	20	360	116	
# 5B KMNO ₄ /H ₂ SO ₄ /H ₂ O #5C 8N HCI / H ₂ O #6 Silica Gel	510			

September 1, 2009

Analytical Report for Service Request No: K0907199

Margery Heffernan Horizon Engineering, LLC 13585 NE Whitaker Way Portland, OR 97230

RE: Saint Gobain/3302

Dear Margery:

Enclosed are the results of the samples submitted to our laboratory on August 07, 2009. For your reference, these analyses have been assigned our service request number K0907199.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3316. You may also contact me via Email at JChristian@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Jeff Christian

Laboratory Director

JC/RH

Page I of 5

Chain of Custody Documentation

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

An Employeu - Owness Company	1317 Sc	outh 13th Ave	a. • Kelso, WA 986	26 • (360) 57	7-7222	(800)	695-7	222 •	FAX (3	360) 63	6-1068		D	ATE_					PAGE		<u> </u>	OF	2	ຕ	
PROJECT NAME Saiv	d Gol	pain	# 3300)				== \$ - 80					ANA	LYS	sis i	REQ	UES	TEL)						
PROJECT MANAGER	/ / / / / / / / / / / / / / / / / / /						7	7	\neg	7	7	1	7	7	1	7	1	7	7	$\overline{}$	7	7 /	Γ		
COMPANY/ADDRESS	Ovizon	Engi	receive		NER		/	4/														//			
13585 NE W					NTAI			4		/		/		/			/ :	/	/		/	/ /			
Portland OR			PHONE_503	255 5050	2 E	1	12/	/ /	/ /	/ /	' /		/	/ /	/	' /	' /	. /	′ /	/ /	' /	' /			
SAMPLERS SIGNATURE _	Poke				NUMBER OF CONTAINERS																				
SAMPLE I.D.	DATE	TIME	LAB I.D.	SAMPLE MATRIX	NOM	\q	<u> </u>		/		_			\angle	_	_	_		_	_		RE	MARKS	.	
Source: Furnace	e No	7																							
Cont. 3 Pun 1	8409	1		Aqu	١	V																			
Cout. 3 Run 2	ų	See		ti.	1	1																			
Cont. 3 Run 3	7			h	i	V																			
Cont. 4 Run 1	ic			· ·	1	V]																		
Cont. 4 Punz	и	_		n	l	/		L																	_
Cont. 4 Run 3	ų.			h	1	/														_					ď
Cout. 1 Punl	i.			Fitter	1	-																			
Cont. 1 Pun 2	ч			и	i	/	1_																		
Cont 12un3	h			u	1	/	1															<u> </u>			
RELINQUISHED B	Y://	L. 1	RECEIVED BY:	TUR	NAROUI			40.000.000.000			IT REQI		ENTS		INVO	ICE IN	FORMA	TION:			S	AMPLE REC	EIPT:		
Signature	44—	Synaldre	M . 1	_ <u>\</u>	Standard			- 5	_×	7 11. Ren	ort (inclui), as requ	les DUP	.MS.	P.O.#	3	43	37	300	1/_	Shippi	ing VIA:				
Printed Name	<i>[</i>	Printed N	ame	- -	Provide '	Verbal Pr	eliminary	y		cha	rged as s a Validat	amples)		Bill To	En	ilu	Bos	المحا	<u> </u>	25.60	ing #:	<u> </u>			
奶~900		Firm Q	709901	,	Provide	FAX nrel	iminary F	PluseF		(în	cludes Al P Deliver	Raw Da	ita)	S		•	,			Condit					ľ
/Date/Time		Date/Tim			ested Rep	1.0.				_ IV. LL	r Deliver	aule nej	XIII							Lab N	10: <u>/C</u>	090	717	15	
RELINQUISHED E	BY:	A	RECEIVED BY	SPI	ECIAL 1	NSTR	UCTIO	ONS/C	OMM	ENTS	:									-					1
1 Aught		1	and the	Acc																					
Signature W		Signature Printed N		tin																					
Printed Name			1(4)	= 70						1	į	. 1	c	r		_	1	· V				*			
	3()	Firm	1 1 1 1	330 P	leas	e s	ind	M	epn	+	to:	Mh	et	ev	ille	1(i)	hor	120	ne	المان	h A	onn	. Cor	^	
Date/Time		Date/Tim	e																						

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

An Employee - Owner Company	1317 Sc	outh 13th Ave	e. • Kelso, WA 986	26 • (360) 577-	7222 •	(800)	695-72	222 • 1	FAX (3	60) 63	6-1068	l	D	ATE_					PAGE		عك	_or_2 "
PROJECT NAME Same	t Gis	bain	#_330.	2_									ANA	ALYS	sis i	REQ	UES	STEI	o			
PROJECT MANAGER					ຜ		7	\mathbb{Z}		7				7	\neg		$\overline{}$	\neg				7/
COMPANY/ADDRESS)	160		INER		1	}/									10	-/-				/ /
	ee f	aze	10+ 2		ATNO		Si.	/	/	/ ,	/ ,	/ ,	/	Ι.	/	/	/ '	1	/	/	/	/ /
		50476	PHONE		JF CC	/	18/			/				' /			' /	/	/ /	/ /	/ /	/ /
SAMPLERS SIGNATURE _		v			BER (/2	$\frac{1}{2}$															
SAMPLE I.D.	DATE	TIME	LAB I.D.	SAMPLE MATRIX	NUMBER OF CONTAINERS	XCL)		_					_	<u>L</u>			\angle			\angle		REMARKS
Court. 8A	8/4/09			Agu	i	V																
Cont. 9	મ	-		ts.	ì	V																
Cont. 12	u			Filter	i	/												<u> </u>	_			3 blanks
					-	<u></u>												<u> </u>	-	_		
						_												_	-	ļ		
									_									-			-	
														_				-		-	-	
-				-	-						_			-				┞─		\vdash		
														-			-	 				
RELINQUISHED B	Y: /	/ F	ECEIVED BY:	TURN	L IAROUN	ID REQ	UIREM	ENTS		REPOR	T REQI	JIREMI	ENTS		INVO	ICE IN	FORMA	TION:				SAMPLE RECEIPT:
L	1/	Duly	At .		24 hr				- X	I. Routi II. Reno	ine Repo od finctoo	ort des DUP	MS.	004	3	30	2			China	ing VIA:	
Signature Printed Name		Signature Printed N	I X I WAGE		Standard Provide \		1,500		-	II. Repo MSD char	, as requ ged as s	iired, ma amples)	y be			-ih		30-31	reti	, ,	ing vi∧: ing #:_	
Time (UMS		Results		•			fil. Data (inc	Validati ludes All	ion Repo Raw Da	ort ota)							Condi	ilian:	
Date/Time/	900	Firm S			Provide F iled Repo		1900	esults		IV. CLF	Deliver	able Rep	xort							Lab N	lo:	10007199
<u> </u>			RECEWED BY	7	CIAL II	V-0.1		MSIC	ONANAI	ENTS:	y)			<u> </u>						<u> </u>		1
RELINQUISHED B	т:	4	and all	24	UIAL II	401111	JO 11C	14376	Civilan	21110.												
Signature 11 Duylunt		Signature Printed N	IM All	17/2																		
Printed Name		Printed N	lame /																			
	30	Firm 8		3.20																		
Date/Time		Date/Tim	10																			

Columbia Analytical Services, Inc. Cooler Receipt and Preservation Form

PC Tho-

Client / Project: Honzon	>	S	ervice Request <i>K</i>	09	0719	9	-43				
Received: \$ 7 0 9	Opened: 8/7/0) <i>G</i> By:_	Brod _			<i>y</i>					
 Samples were received via? Samples were received in: (circle Were <u>custody seals</u> on coolers? 	US Mail Fed Ex c) Cooler Bo			PDX	Courier	Hand De NA	livered				
If present, were custody seals inta	act? Y	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	resent, were they s		lated?	Y	N				
4. Is shipper's air-bill filed? If not,	record air-bill number:				(NA) Y	N				
 5. Temperature of cooler(s) upon to Temperature Blank (°C): Thermometer ID: 6. If applicable, list Chain of Custod 	_										
7. Packing material used. Inserts	Baggies Bubble W	rap Gel Packs	Wet Ice Sleeve	es Other_(7/00						
8. Were custody papers properly fille	30 M M M M M	201			NA	_	И И				
9. Did all bottles arrive in good condition (unbroken)? Indicate in the table below. NA											
	0. Were all sample labels complete (i.e analysis, preservation, etc.)? NA (Y) N										
SOURCE OF SELECTION CONTRACTOR CONCENTS IN APPRICACE CONTRACTOR CO	11. Did all sample labels and tags agree with custody papers? Indicate in the table below NA N										
12. Were appropriate bottles/containers and volumes received for the tests indicated? NA Y N 13. Were the pH-preserved bottles tested* received at the appropriate pH? Indicate in the table below NA Y N											
13. Were the pH-preserved bottles tes14. Were VOA vials received without				DETON.	(NA (NA	5 5	N				
15. Are CWA Microbiology sample	AND STATE OF THE S			collection?			N				
16. Was C12/Res negative?	20 1000, 00 11 11 11 27 2	10 2 in. inoid in	io i community in our	· concenton ·	(NA		N				
or remarks and reserved	r sanskilet at til Feld (C. 108	cárani) is erece.	uzi milakisida Albuma	udo taliferación ar	t Asimtama, dodak	a stave u	Ost Alfr				
Sample ID on Bottle	Sample ID on COC		ample ID on Bottle		Sample JD	on:500					
Sample ID		f Heed- space Broke : r	H Reagent	Volume added	Reagent Lot Number	Inttials	Time				
					No. 100						
							72				
***	*)				· · ·	<u> </u>					
*Does not include all pH preserved sample alique Additional Notes, Discrepancies, &		ceiving SUP (SMU-G	ev).			1X					
			60000 NA			2000000 2000					

Metals

Analytical Report

Client:

Horizon Engineering, LLC

Project:

Saint Gobain/3302

Sample Matrix: Misc.

Service Request: K0907199

Date Collected: 08/04/09 Date Received: 08/07/09 Date Extracted: 08/17,18/09

Total Metals Units: Micrograms (µg) (Field Blank Corrected)

			Front Half Run - 1 (Analytical Fraction 1A)		Back Half Run - 1 (Analytical Fraction 2A)		Total Front Half + Back Half	
	Sample Name:		Furnace No. 4		Furnace No. 4		*.	
	Lab Code:		K0907199-001,-007		K0907199-004	a s:		
	Date Analyzed:		08/19/09		08/18,19/09		•	
Analyte	EPA Method	Front Half MRL		Back Half MRL		Total MRL		
Chromium	29/200.8	1.0	770	0.1	0.6	1.1	771	

Analytical Report

Client:

Horizon Engineering, LLC

Project:

Saint Gobain/3302

Sample Matrix: Misc.

Service Request: K0907199 Date Collected: 08/04/09 Date Received: 08/07/09 Date Extracted: 08/17,18/09

Total Metals Units: Micrograms (µg) (Field Blank Corrected)

			Front Half Run - 2 (Analytical Fraction 1A)		Back Half Run - 2 (Analytical Fraction 2A)		Total Front Half + Back Half
	Sample Name:		Furnace No. 4		Furnace No. 4		-
	Lab Code:		K0907199-002,-008		K0907199-005		8 <u>=</u>
	Date Analyzed:		08/19/09		08/18,19/09		
Analyte	EPA Method	Front Half MRL		Back Half MRL		Total MRL	
Chromium	29/200.8	1.0	801	0.1	0.2	1.1	801

Analytical Report

Client:

Horizon Engineering, LLC

Project:

Saint Gobain/3302

Sample Matrix: Misc.

Service Request: K0907199

Date Collected: 08/04/09 Date Received: 08/07/09

Date Extracted: 08/17,18/09

Total Metals Units: Micrograms (µg) (Field Blank Corrected)

			Front Half Run - 3 (Analytical Fraction 1A)		Back Half Run - 3 (Analytical Fraction 2A)		Total Front Half + Back Half
	Sample Name:		Furnace No. 4		Furnace No. 4		-
	Lab Code:		K0907199-003,-009		K0907199-006		
	Date Analyzed:		08/19/09		08/18,19/09		-
Analyte	EPA Method	Front Half MRL		Back Half MRL		Total MRL	
Analyte	Method	MIKL		MICL		WILL	
Chromium	29/200.8	1.0	757	0.1	2.0	1.1	759

Analytical Report

Client:

Horizon Engineering, LLC

Project:

Chromium

Saint Gobain/3302

Sample Matrix: Misc.

Service Request: K0907199

Date Collected: 08/04/09 Date Received: 08/07/09

Date Extracted: 08/17,18/09

Total Metals

Units: Micrograms (µg)

Sample Name:

Lab Code:

Date Analyzed:

29/200.8

(Analytical Fraction 1A) K0907199-010,-012 Back Half Blank

(Analytical Fraction 2A) K0907199-010,-011

Front Half Blank

08/19/09

1.6

08/18,19/09

Front EPA Half Analyte Method

MRL

1.0

MRL 0.1

Back

Half

0.57

Analytical Report

Client:

Horizon Engineering, LLC

Project:

Saint Gobain/3302

Sample Matrix: Misc.

Service Request: K0907199

Date Collected: NA Date Received: NA

Date Extracted: 08/17, 18/09

Total Metals Units: Micrograms (µg)

Sample Name: Lab Code: Date Analyzed: Method Blank -Front Half K0907199-MBF 08/19/09

Method Blank -Back Half K0907199-MBB 08/18,19/09

ND

Front Back EPA Half Half Analyte Method MRL MRL

Chromium 29/200.8 1.0 ND 0.1

QA/QC Report

Client:

Horizon Engineering, LLC

Project:

Saint Gobain/3302

Sample Matrix: Misc.

baint Good

Service Request: K0907199

Date Collected: 08/04/09
Date Received: 08/07/09

Date Extracted: 08/17,18/09 Date Analyzed: 08/18,19/09

Duplicate Summary Total Metals Units: Micrograms (µg) (Field Blank Corrected)

Sample Name:

Furnace No. 4: Back Half Run - 1 (Analytical Fraction 2A)

Lab Code:

K0907199-004D

				Duplicate		Relative
	EPA		Sample	Sample		Percent
Analyte	Method	MRL	Result	Result	Average	Difference
Chromium	29/200.8	0.1	0.6	0.6	0.6	<1

QA/QC Report

Client:

Horizon Engineering, LLC

Project:

Sample Matrix: Misc.

Saint Gobain/3302

Date Received: 08/07/09 Date Extracted: 08/17,18/09

Date Collected: 08/04/09

Service Request: K0907199

Date Analyzed: 08/18,19/09

Matrix Spike Summary Total Metals Units: Micrograms (µg) (Field Blank Corrected)

Sample Name:

Furnace No. 4: Back Half Run - I (Analytical Fraction 2A)

CAS Percent

Lab Code:

K0907199-004S

Sample Result

Spiked Sample Percent Result Recovery

Recovery Acceptance Limits

Analyte Chromium MRL Level 0.1

8.7

70-130

7.8 0.6

Spike

104

QA/QC Report

Client:

Horizon Engineering, LLC

Project: LCS Matrix: Saint Gobain/3302

Water

Service Request: K0907199

Date Collected: NA
Date Received: NA

Date Analyzed: 08/19/09

Laboratory Control Sample Summary (Front Half)

Total Metals Units: μg/L (ppb)

Source:

CAS Spike Solution

CAS

Percent Recovery Acceptance Limits

Analyte Chromium

29/200.8

EPA

Method

100

True

Value

104

Result

104

Percent

Recovery

85-115

K0907199fCP jc2 - LCSW-Front 09/01/09

QA/QC Report

Client:

Horizon Engineering, LLC

Project:

Saint Gobain/3302

LCS Matrix: Water

Service Request: K0907199

Date Collected: NA

Date Received: NA

Date Analyzed: 08/18,19/09

Laboratory Control Sample Summary (Back Half)

Total Metals Units: µg/L (ppb)

Source:

CAS Spike Solution

CAS

Percent Recovery **EPA** Тгие Percent Acceptance Analyte Method Value Result Recovery Limits Chromium 29/200.8 20 20.4 102 85-115

<u>,</u> .

Saint Gobain
Furnace 4
Seattle, WA
EPA 1

4-Aug-09 NY 3302 MEW

Outer Circumference	Co	in					
Wall thickness	t	in					
INSIDE of FAR WALL to OUTSIDE of Nipple	F	in	43.25		Down St		turbance
INSIDE of NEAR WALL to OUTSIDE of Nipple	N	in	3	A A		Port	
STACK WALL to to OUTSIDE of Nipple	N-t	in		+	Ds F	N	Co
DOWNstream Disturb	A	in	144.0		E.		CI
UPstream Disturb	В	in	204.0				· V
Inner Diameter	Ds	in	40.25	В			
Area	As	sqin	1272.4	Д	I	t) XKt	-
DOWNstream Ratio	A/Ds	•	3.58		Flow		
UPstream Ratio	B/Ds		5.07		Piow		
Minimum #Pts (Particulate)			20		<u> </u>	————Dist	turbance
Minimum #Pts/Diameter			10		′ /	\	
Minimum #Pts (NON-Particu	late)		16	/	Up Stream		
Minimum #Pts/Diameter			8	/		/	
Actual Points per Diameter			12				
Actual Points Used			24				_
Trav	Fract	Stack	Actual	Nearest	Adjusted	Traverse	Traverse
Pt	Stk ID	ID	Points	8ths	Points	Points	Points
#No	(f)	(Ds)	(Dsxf)	(TP)	(TP)	(TP + N)	(TP + N)
1	2.13%	40.3	0.9	0.875	1	4	4
2	6.70%	40.3	2.7	2.75	2.75	5.75	5 3 / 4
3	11.81%	40.3	4.8	4.75	4.75	7.75	7 3 / 4
4	17.73%	40.3	7.1	7.125	7.125	10.125	10 1 / 8
5	25.00%	40.3	10.1	10.125	10.125	13.125	13 1 / 8
6	35.57%	40.3	14.3	14.375	14.375	17.375	17 3 / 8
7	64.43%	40.3			25.875	28.875	28 7 / 8
8	75.00%	40.3	30.2	30.25	30.25	33.25	33 1 / 4
9	82.27%	40.3	33.1	33.125	33.125	36.125	36 1 / 8
10	88.19%	40.3	35.5	35.5	35.5	38.5	38 1 / 2
11	93.30%	40.3	37.6	37.5	37.5	40.5	40 1 / 2
12	97.87%	40.3	39.4	39.375	39.25	42.25	. 42 1 / 4

13585 NE Whitaker Way • Portland, OR 97230 Phone (503) 255-5050 • Fax (503) 255-0505 www.horizonengineering.com

-	200	20020			
Са	libr:	afior	Fiel	d Re	ecore

Client:	2+60621
Test Date:	915109
Source:	211+25

Observer:

Datalogger: 40,400/-†
Conditioner: M+C

									Conditioner:	MITC	Uni
Leak Checks: ProOR Post-OK Probe placement	Centroid	Cylinder #	Gas	Cylinder Value	Analyzer Calibration	Resp.	Start Run / System Calibration	End Run / Start Run / System Calibration	End Run 2 Start Run 3 System Calibration	End Run 3 System Calibration	کے
				(Cv)	Response (Cdir)	Time (secs)	Response (Cs)	Response (Cs)	Response (Cs)	Response (Cs)	
	Times				0736		0751	1747	1629	1815	
02%	ch	Air	02 -	2019	20.9	90	-, ,	11	/ > ->	20,00	
Range/CS	25 1209		02	11.61	11.8		11.62	11.63	11.69	11.59	
Analyzer Model	Servo	37	N2	0.0	-100	(107	" 07	U.W	0.a	
Analyzer SN:	33		CONTROL OF STREET	150-10 Acidoresicalis	Street No.	THE R. P. LEWIS CO. P. LEWIS CO				Sur Symposium	
Maria San		7 (21.76	21.76	0.0		TO A TABLE TO A TABLE		A 51485年8	
CO2 %	ch2	35	CO2	, ,	12,25	90	1) 1/2	11.35	12.02	1199	
Range/CS	35 1217		CO2	7 7	1000		12,20		100		
Analyzer Model	99100	05_	N2	0.0	-0.01	14-	101	.06	110	0.08	
Analyzer SN:	166	12	(O)2	5.97	5.96	IN IN IN IN IN		(P. 20 6 6 20 6 5			
₹62 Co-ppm	ch_7	55	900 A	220,7	220.7	120			THE R. P. LEWIS CO., LANSING,		
Range/CS	250 12200	796	401	931	93.4	1	91.0	91	42.3	533	
Analyzer Model	Anerek	05	N2	0:17	,01	Π	2.5	2,5	2.13	41	
Analyzer SN:	03	51	502	51.7	50,1	7	~	0.70			
					,		· · · · ·	ar			•
१०३ N ©x ppm	ch <u>&</u>	95	TNO	220.7		120					
Range/CS	250 0207	56	稻山		92.65		360	95.0	£136	25.0	
Analyzer Modeł	Autell	07	N2	0.0	1/2		3.1	1,0	2.9	3, 1	
Analyzer SN:	4	51	402	5/17	50.60		15550		1400		
		•			· · · ·	(21.76			
TGOC ppm	ch/					<u>r</u> e1	1/	12,28	11 1		
Rance						(0)	-		10/1		
Analyzer Model						CU		0:09	:04		
Analyzer SN:			Air								
							*	•			
	ch	,									
Range/CS	<i>**</i> ,										
Rangeros	/							Ē	*2). · ·	_
1 ~~ ~	Tooling									1	
MIDANS	LEDITIE	<i>\</i>									- 25
08/14	Testina 12009	J		and the self						A SIL	
00/01	1000	20)		Performance Sp	pos: (25A)	9	Test Times	Run 1	1502 Run 2	Run 3	
110- 1	200			(5)	S 5		rest rimes Start Time _	1225	34 146 1	1639	
	ا اساسار			5% (Cs-Cv) /	UY	- 39	atait iiine _			1	
ylas C	J.1			5% (Cs-Cv)/	-	84	End Time	17117	10-11	1200	

"Alternate specification: 0.5 ppmv absolute difference

129 02 CO2 69% RH 81 15424,27

16,20 4,10

D.61299 206-595-7675 :7 16.42 3.47

1505 - Pt #1 Strat Hot Line Temp \$50 1515 - P2#2 Chrit Hot Line Temp 250 1525 - P2#3

45

Analyzer QA Checks

Saint Gobain Furnace No. 4, August 5, 2009		Cylinder ID	Range	Cylinder Value Cv	Analyzer Calibration Response Cdfr	Inillal System Calibration Response Csl	Final System Calibration Response Csf	Cylinder Value Percent of Span	Analyzer Calibration Error < 2%	Initial System Blas < 5%	Final System Blas < 5%	Drift < 3%
OXYGEN												
Run 1	High Conc. (CS) Mid-Conc. High Zero	Ambient O-5 22	25 25 25	20.95 11.61 0.00	20.90 11.80 0.00	11.62 0.03	11.63 0.04	100% 55% 0%	0.2% 0.9% 0.0%	-0.9% 0.1%	-0.8% 0.2%	0.0% 0.0%
Run 2			25 25 25		20.90 11.80 0.00	11.63 0.04	11.65 0.00			-0.8% 0.2%	-0.7% 0.0%	0.1% 0.2%
Run 3			25 25 25		20.90 11.80 0.00	11.65 0.00	11.59 0.00			-0.7% 0.0%	-1.0% 0.0%	0.3% 0.0%
CARBON DI	OXIDE							· · · · ·	*			
Run 1	High Conc. (CS) Mid-Conc. High Mid-Conc. Low Zero	35 22 12 O-5	25 25 25 25	21.76 12.52 5.97 0.00	21.76 12.28 5.96 -0.01	12.20	11.35	100% 58% 27% 0%	0.0% 1.1% 0.0% 0.0%	-0.4% 0.1%	-4.3% 0.3%	3.9%
Run 2			25 25 25		21.76 12.28 5.96	12.10	12.02			-0.8%	-1.2%	0.4%
	ş		25		0.09	0.09	0.10			0.0%	0.0%	0.0%
Run 3			25 25 25		21.76 12.28 5.96	12.02	11.99			-1.2%	-1.3%	0.1%
			25		0.09	0.10	80.0			0.0%	-0.0%	0.1%

Part 60, Appendix A, Method 6C, Figures 6C-3 to 6C-5; Method 25A

Production/Process Data Furnace Operating Data

Saint-Gobain Containers, Inc., Seattle Plant Furnace Operating Data August 4, 2009

Test Times	8/4/2009
Run 1	12:25-13:42
Run 2	14:41-16:06
Run 3	16:39-17:55
Run 4	NA
Run 5	NA
Furnace #	4
Pull Rate (Tons Glass/Day)	135.9
Gas (scfh)	34423
Oil (gal/hr) #2 Ultra-low Sulfer Diesel	0
Oxygen (scfh)	0
Air (scfh)	241000
Electric Boost (kW)	2736
Bridgewall Temp (F)	2830
Cullet Ratio (%)	50.7
Glass Color	CG

٠.

Calibration Information

Meter Box
Calibration Critical Orifices
Standard Meter
Pitots
Thermocouples and Indicators
Nozzle Diameters
Barometer
Calibration Gas Certificates

Biannual Meterbox Calibration

Method Location Meter Box ID Meter ID calibrated by					Leak checks Negative Positive		Date 8 Pb= 3 Ta= 7 Tamb 5 in/min @ in/min @	80.00 78	(in Hg) (oF) (oR) inches Hg inches H20			0.97 <y<1.03 Y= dH@=</y<1.03 	Old 1/7/09 0.99612 1.87206	New 8/3/09 0.99618 1.85111	Change _ (+/-) 0.0%1.1%	pass
4	VAC (in Hg)	Critical Orifice ID	к	dH (InH2O)	Meter (ft3)	Net (ft3)	Fleld Tdi (oF)	Meter Tdo (oF)	To (oR)	Tm (oR)	Time t (min)	Y	dH@	Y 0.020	dH@ 0,20	Allow. Tolerance
Initial Final	25.0	40.0	0.23610	0.32	231.6010 237.0000	5.3990	82.0 82.0	82.0 84.0	n .	542.5	17.25	0.99940	3434723474	0.003 pass	0.00 pass	
initial Final	18.0		0.80674	3.90	237.0000 245.4050	8.4050	83.0	84.0 86.0	H	543.8	7.77	0.98132	1.88023	0.015 pass	0,03 pass	
Initial Final	22.0	55.0	0.46086	1.20	245.4050 251.0000	5.5950	83.0 84.0	86.0 90.0	H 1	545.8	9.20	1.00783	377 - 1 52350 90900	pass	0.03 pass	
												0.99618	1.85111	0.00595	0.01168	

de

Post Test Meterbox Calibration

Method Location Meter Box calibrated by	VAC Critical K dH Meter					Date 0 Pb= 3 Ta≃ 7 Tamb 5	75	(in Hg) (oF) (oR)	North		Y= dH@=	Biannual 08/03/2009 0.99618 1.85111	Post-Test 08/05/2009 1.00498 1.80284	Change (+/-) 0.9% -2.7%	pass	
							Field	Meter			Time					
	VAC	Critical	K	dH	Meter	Net	Tdi	Tdo	То	Tm	t					
	(in Hg)	Orifice ID		(inH2O)	(ft3)	(ft3)	(oF)	(oF)	(oR)	(oR)	(min)	Y	dH@	Y	dH@	
														0.020		Allow. Tolerance
Initial	21.5	56.0	0.47900	1.30	640.6750	5.0940	85.0	89.0	547.5	546.3	8.00	1.00392	1.78202	0.001	0.02	
Final .		1 1			645.7690		85.0	86.0						pass	pass	
Initial	21.5	56.0	0.47900	1.30	645.7690	5.2180	84.0	85.0	545.0	544.3	8.25	1.00699	1.81442	0.002	0.01	
Final		1			650.9870		83.0	85.0					ASSESSMENT SERVICES	pass	pass	
Initial	21.5	56.0	0.47900	1.30	650.9870	6.0180	83.0	84.0	544.0	543.5	9.50	1.00404	1.81209		0.01	
Final	JI				657.0050		83.0	84.0						pass	pass	
												1.00498	1.80284	0.00080		

3 !									
Method Location Meter Box Meter ID	57nc		l. Cobass	<u>J</u>	Dat Pb: Ta:	= 3	109 30.0 15	(in Hg)
Calibrated by	. W	S			Leak Check Rate		000]in/min	
	VAC (inHg)	Critical Orifice	К	dH inH2O	Meter (ft3)	Field Tdi (oF)	Meter Tdo (oF)	Time . t (min)	
Initial Final Initial Final Initial	21.5 21.5 21.5	56 56	0.47900	1.3	690.675 1545.769 645,769 650.987	85 84 83	89 85 85	8:00 = BUE	-
*If the box leaks Be sure to upda **You must col ***For post-test of Make 3 runs of 5 of Comments:	s or doesn ite new K lect at le	n't calibrate values froi ast 5 cuft.	m annual c	ason plea	s when enterin	g data int	o spread	sheet.	inent it.
Method Location Meter Box Meter ID Calibrated by	EPA M	-5 #7.2		e et	Date Pb= Ta= Leak Check Rate		<i>P</i> (3)	(in Hg) (oF) in/min	
,	VAC (inHg)	Critical Orifice	К.	dH inH2O	Meter (ft3)	Field Tdi (oF)	Meter Tdo (oF)	Time t (min)	
Initial Final Initial Final								**	¥. 040

Comments:

Initial Final

^{*}If the box leaks or doesn't calibrate for any reason please let report writer know ASAP and document it. Be sure to update new K values from annual calibrations when entering data into spreadsheet.

^{**}You must collect at least 5 cuft.

^{****}For post-test calibrations in field (New 10.3.2, Old 5.3.2) Select orifice nearest to operational conditions Make 3 runs of 5 cuft each.

Critical Orifice Calibrations

Set Job#	Shop in house										Vhitaker W	ay
Date:	6/23/09	7/6/09								Portland, C	R 97230	
DGM (Y)=	0.99630									Phone (503	3) 255-5050	
DGM ID#	standard					/				Fax (503	3) 255-0505	2
Calibrated by:	JKR	KRK	*** Minimu	ım 5 mimit	e Runs ***	1					30	
Dry Gas Meter			Orifice ID	73 V	Orifice ID	63 V	Orifice ID	55 V	Orifice ID	48 V	Orifice ID	40 V
K' Critical Orifice Coe	fficient		0.80674	7.	0.59036		0.46086		0.34656		0.23610	
	Symbol	Units	Run 1	Run 2	Run 1	Run 2	Run 1	Run 2	Run 1	Run 2	Run 1	Run 2
Initial volume	Vi	ft³	610.700	624.024	590.205	598.636	921.813	927.904	563.145	568.972	555.700	559.185
Final Volume	Vf	ft³	624.024	636.805	598.636	610.613	927.904	934.010	568.972	574.526	559.185	563.145
Difference	Vm	ft³	13.324	12.781	8.431	11.977	6.091	6.106	5.827	5.554	3.485	3.960
Temperatures												
Ambient		۰F	72.0	72.0	72.0	72.0	70.0	70.0	72.0	72.0	72.0	72.0
Absolute ambient	Ta	°R	531.7	531.7	531.7	531.7	529.7	529.7	531.7	531.7	531.7	531.7
											V	
Initial Inlet	Ti	°F	88.4	92.4	84.2	89.6	79.0	80.0	80.4	81.4	78.6	79.4
Outlet		۰Ŀ	81.2	82.6	79.6	80.4	(C) (N) (N) (N) (N) (N) (N) (N) (N) (N) (N	74.0	76.2	77.2	74.6	75.4
Final Inlet	Ti	°F	98.0	97.8	91.6	92.2	81.0	82.0	82.4	83.2	79.6	80.6
Outlet	Tf	۰F	82.8	83.6	80.6	81.6	74.0	74.0	77.4	78.0	75.4	76.4
Avg. Temp	Tm	°R_	547.3	548.8	543.7	545.6	536.4	537.2	538.8	539.6	536.7	537.6
Time		min	12	11	10	15	10	10	12	12	11	12
		sec	21	49	41	10	0	0	40	3	8	40
			12.35	11.82	10.68	15.17	10.00	10.00	12.67	12.05	11.13	12.67
Orifice man, rdg	dH@	in H2O	4.200	4.200	2.200	2.200	1.300	1.300	0.690	0.690	0.300	0.290
Barometric. Pressure	Pbar	inHg	30.20	30.20	30.20	30.20	30.10	30.10	30.20	30.20	30.20	30.20
Pump vacuum	i	inHg	8.0	8.0	14.0	14.0	17.0	17.0	17.0	17.0	18.0	18.0
K' factor			0.80682	0.80666	0.59122	0.58950	0.46061	0.46110	0.34650	0.34662	0.23645	0.23575
K' factor Average				0.80674		0.59036	i	0.46086		0.34656		0.23610
% Error (+/- 0.5)		_%		0.01%		0.15%		0.05%		0.02%		0.15%
				14 16 1-		200 (100)	955 <u>253</u> 253	255 000000000		ENGLISHMAN	2 (200 00)	
Vcr(std) Vm(std)	·* ·		13.0506 13.0991	12.4845 12.5309		11.7100 11.7535		6.0306 6.0530			3.4479 3.4607	3.9112 3.9257
Y			0.9963	0.9963		0.9963		0.9963			0.9963	0.9963
820	20.		5.5500	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Critical Orifice Calibrations

Set TV 4

Job # in house

Date: 6/28/09

DGM (Y) = 0.99630

DGM ID # standard

Horizon Engineering 13585 NE Whitaker Way Portland, OR 97230 Phone (503) 255-5050

Fax (503) 255-050

Calibrated by: JR *** Minimum 5 minute Runs ***

Canbiated by.	711		TATHIHIT.	dis 5 minut	c ituis							
Dry Gas Meter			Orifice ID	#35	Orifice ID	#44	Orifice ID	#51	Orifice ID	#56 V	Orifice ID	#65 V
K' Critical Orifice Coef	ficient		0.18151		0.29158		0.37467		0.47900		0.63628	
	Symbol	Units	Run 1	Run 2	Run 1	Run 2	Run 1	Run 2	Run 1	Run 2	Run 1	Run 2
Initial volume	Vi	ft³	791.100	794.650	799.220	806.000	779.000	786.100	810.650	815.005	759.905	770.401
Final Volume	Vf	ft³	794.650	799.220	806.000	810.650	786.100	791.100	815.005	822.100	770.401	778.998
Difference	Vm	ft³	3.550	4.570	6.780	4.650	7.100	5.000	4.355	7.095	10.496	8.597
Temperatures												
Ambient		°F	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0
Absolute ambient	Ta	°R	529.7	529.7	529.7	529.7	529.7	529.7	529.7	529.7	529.7	529.7
Initial Inlet	Ti	۰F	79.2	76.2	77.0	79.4	85.2	79.2	79.4	82.2	83.0	84.4
Outlet	Tf	°F	75.8	75.6	76.0	76.8	75.1	75.6	77.2	77.2	82.8	74.6
Final Inlet	Ti	۰F	76.8	77.4	80.2	80.6	80.6	81.0	83.8	85.6	86.2	
Outlet	Tf	°F	75.8	76.2	76.8	76.8	75.6	76.0	77.2	77.8	74.4	75.4
Avg. Temp	Tm	oR	536.6	536.0	537.2	538.1	538.8	<u>5</u> 37.6	539.1	540.4	541.3	540.1
Time		min	14	19	17	12	14	10	6	11	12	10
		sec	41	5	30	1	13	5	52	5	25	10
			14.68	19.08	17.50	12.02	14.22	10.08	6.87	11.08	12.42	10.17
Orifice man. rdg	dH@	in H2O	0.180	0.180	0.500	0.500	0.870	0.870	1.400	1.400	2.600	2.600
Barometric, Pressure	Pbar	inHg	30.50	30.50	30.50	30.50	30.50	30.50	30.50	30.50	30.50	30.50
Pump vacuum		inHg	19.0		18.0	18.0	17.0	17.0	15.0	15.0	15.0	15.0
K' factor			0.18228	0.18074	0.29200	0.29116	0.37560	0.37375	0.47735	0.48065	0.63547	0.63710
K' factor Average				0.18151		0.29158		0.37467		0.47900		0.63628
% Error (+/- 0.5)		%		0.43%		0.14%		0.25%		0.34%		0.13%
Vcr(std)	3#6		3.5470									
Vm(std) Y	%¥ 3. +		3.5602 0.9963	4.5878 0.9963		4.6539 0.9963				7.0861 0.9963	10.4956 0.9963	

13585 N.E. Whitaker Way • Portland, OR 97230 Phone (503)255-5050 • Fax (503)255-0505 www.horizonengineering.com

Standard Meter Calibration ID# 2299046 Northwest Natural, Gas Meter Division

SET	NEW METER N	имвег	SIZE		PERF#			NEW ERT#			INDEX REA	ADING				
CHANGE	OLD METER N	JIMBER	SIZE		OLD PERF	#		OLD ERT#			OLD INDE	K READING				
REMOVAL SERVICE	E ADDRESS			SPA	ACE OR AF	T NO					CITY					
				-1.												
METER	LEFT EQU	IP LEFT	CURB	LEFT	CDS	VALV	E	LOC.	INS.		B5.	BW.	PDL			
ON	OFF ON	OFF	ON	OFF	ÒИ	OFF										
GREEN	TAG YELLO	OW TAG	TIED	NOT	МТ		6.5 INW	@ 130 CFH	7 2	ZLB		OVER 21	B			
YES	NO YES	NO		TIED	PRESS	LIFE CANCEL										
REMAR	KS	Met.	er	e	Ste	at	3	101	ري	ra	tes.					
only	,		-													
Comple	Ind Rec								Date:							
сыны	ico by.								TE 5000	FORM	ETER SHOP	ONLY	A			
METER	WRONG	INDEX		DR	ME				MENISHE	i coi	ES EST.	INCOMING	A			
SAMPLE 1	SIZE 2	IMPAIRE 3	:D	DR 4	IMPA		Dir.	800	- 19	9.(OVER 2LB OVER 2LB OVER 2LB FILSHOP ONLY INCOMING ESTS OPEN CHECK NDEX READ ENTREAD				
ERT DAMAGE	LEAK 8	NG	LIQUIDS 15	DEMAND METER SHANGES				9	9, (e.	CHECK					
. /	connectou	DEC.	Unauthi	orizeid 1		ONLY	2.0	9	- A	建筑行成设计	INDEX READ	EBT READ				
OTHER 19	CORROSION 20	21	PCC 24	Gas/Van								70				
F-8735 I	METER RECORD	P/		690		N	.S. 5.	275								
	0.		Alexander of			_ =	The state of the s	PERSONAL PROPERTY.	क्रिक्ट स्टाइ	Durant.	Tree of the re	THE PROPERTY.	A The Committee of the			

D4-1		2 pec 4 WT		Location	Whiteker Shi		5	Past	Pote		P	Pitol	Dale	Cc	S
Pitol	Date Tested	Ср	S	Pitol	Tested	Ср			Date Tested	Ср	5		Tested	Ср	S
5-1 5-2	Not in use 3/18/00	0.6049	0.005	5-11 5-12	3/17/2000	0.8345 0.8366	0.002		3/11/09	0.8354 0.6236	0.004 0.004		08/03/00 03/18/00	0,8397	0.003
5-3 5-4	Not in use 3/10/08	0.8385		5-13	8/8/2009 6/8/2009	0.6376	0.002	5-3	3/11/00 Not in use	0.8167	0.004		Not in use 03/11/00	0.8213	0,001
5-5	3/10/09	0.8280	0.002	5-15	6/8/2000	0,8119	0.007	5-5	3/11/09	0.8256	0.003	7-5	03/10/00	0.8365	0,002
5-0 5-7	3/11/00	0.8289	0.002		6/8/2009 6/8/2009	0.8135 0.8124	0.007		3/10/00	D 8390	0.001	7-8 7-7	03/17/00	0.8384	0.001
5-8 5-9	3/18/00	0.6160	0.004	5-18	6/8/2000	0.B154	0.005	1				7-8	02/17/09	0.8384	0.001
5-10	3/10/09	0.8251 0.6353	0.003												
		(P-Type)	(S-Type)	Ср	dS	Аме Ср	<0.01			(P-Type)	DpS (S-Type)	Ср	dS	Ave Cp	5 <0.01
Stetus	5-1							Status	G-1 Pass	0.330 0.640	0.470 0.895	0.8298 0.8372	0.000	0.8354	0.004
Date Tester	Not in use							Date Tester	3/11/2000 PS	1.100	1.530	0.8394	0.004		
	6-2	0.310	0.480	0.7956	0.000	0.8049	0.000		5-2	D 330	0.475	0.8252	0.001	0.8239	0.004
Status	Poss	0.590	0.880	0.8106	0,000	0.6049	0.000	Status	Pass	0 640	0.915	0.0280	0.004	0.0230	0.004
Date Tester	3/18/2000 JR	1.000	1,500	0.0083	0.003			Date Tester	3/11/2069 PS	1,100	1 610	0.8183	0.006		
	6-3							Design Control	6-3	0.330	0 480	0.8200	0,006	0 8167	0.004
Status								Status	Pass	0.050	0.970	0.8104	0.006	00101	0,004
Date Tester	Not in use							Date Tester	3/11/2000 PS	1,100	1.620	0.8168	0,000		
	5-4	0.320	0.450	0,6348	0.004	D.8380	0.000		0-4				•		
Stalus	Pass 3/10/2000	0.830	0.801	0 B40B	0.006	2.0000	0.000	Slatus							
Dale Taster	25 PS	1.100	1.550	0.8340	0 005			Date Tester	Not in use						
	5-5	0.330	0.470	0.6298	0.002	0.8280	0.002		6-5	0.330	0.470	0.8295	0.004	0.8256	0.003
Status Date	Pacs 3/10/2000	0.640	0.020	0.8257	0.002			Status	Pass	0,642	1.600	0.B225 0.B246	0.003 0.001		51205
Tosier	PS /	1.100	1.570	0.8267	0.001			Date Tester	3/11/2009 PS	1.110	1.000	0.0240	0.001		
	5-6 1/	0.325	0 460	0.8321	0.003	0.8289	0.002		6-6	0.330	0.460	0.8385	0.000	0.6390	0.001
Status Dato	7 ₈₀₅ V 3/11/2000	0.630	0.000	0.6263 0.6264	0.001	(44)FE55	70.00	Status Data	Pass	0.630	0.076	0.8400 0.8384	0.001		235500
Tosler	PS PS	1.080	1.550	0.6204	0,003			Tester	3/10/2009 PS	1.040	1.450	0.0304	0.001		
	5-7	0.330	0.460	0,8365	0.001	0 6300	0.005		7-1	0.300	0 450	0.8083	0.007	0.8153	0.005
Stalus Dala	7/10/2009	0.640 1.080	0.875 1.620	0.8467 0.8345	0.007			Status Data	Poss 8/3/2009	0.000	1.400	0.8222	0,007		
Toster	PS	1.020	1.020	4.0240	0.005			Testor	NY	0 930	1.450	0.0100	5 000		
	5-0	0.315	0.470	0,8105	0.000	0.8160	0.004		7-2	0.310	0.430	0,8406	0.001	0.6307	0.003
Status Date	Pass 3/18/2009	0.600 - 0.980	1,420	0.8152	D.008			Status Date	Pass 3/18/2009	0.610	0.840	0.6435 0.6348	0.004		
Toster	JR /	0.000	1.420	0.0224	0.000			Testor	JR	0.000	1.000	0.0342	0.000		
	5-0	0.320	0.460	0.8257	0.001	0.8251	0.002	1000 11 11	7-3						
Stalus Dalo	7/18/2000	0.580	0.B30 1.460	0.8276	0.002			Status Date	Not in use						
Toster	JR /	/		A second				Tester	xx						
	6-10 V	0.330	0.405	0.8340	0.001	0.8353	0.003		7-4	0.327	0.477	0.8197	0.002	0.6213	0.001
Stalus Dolo	2/18/2009	1,100	1.530	0.8325	0.003			Status Date	Pass 3/11/2009	1.100	1.680	0.B232 0.8200	0.002		1
Tester	P5							Tester	PS						i
	B-11	0.345	0.463	0.8367	0.002	0 8345	0.003	200000	7-5	0.320	0.450	0,8348	0.004	0.8385	0.002
Sinius Date	2/17/2000	1.000	1.400	0,8302 0,8367	0.004			Status Date	3/10/2009	1.080	1,500	0,8406	0.002 0.002		
Tester	JSL							Tester	PB						
Dana	5-12	0.330	0 450	0.6385	0.002	0.8366	0.000	F1-1	7-0	0,315	0.442	0.8307	0.001	0.8384	0.001
Status Date	Pass 4/21/2000	1.050	1.500	0.8431 0.6283	0.008		ĺ	Status Data	3/17/2000	1.000	0.850 1.400	0.8387 0.8357	0.000		- 1
oster	PW							Tester	JSL						- 1
Status	5-13 Pess	0.330	0,460	0.6385	0.001	0.8376	0.002	Clatur	7-7 Page	0.330	0,465	0.8340	0.000	0.8341	0,002
Date	4/21/2009	0.645 1.050	1,460	0.8404 0.8339	0.003 0.004		- 1	Status Date	9/11/2009	0.637 1.110	1.550	0.8306 0.8378	0.004		
osler	PW							Tester	PS						
Status	5-14 Pass	0.418	0.630 0.835	0.7987 0.7857	0.006	0 7026	0.004	Status	7-8 Pats	0.318	0.442	0.8397 0.6387	0.001	0.5384	0.001
Outo	6/8/2000	0.765	1.200	0.7905	0.002		- 1	Dola	3/17/2009	1.000	1.400	0.8367	0.002		- (
oster	PW . /	/		,				Tester	JSL						- 1
italus	6-16 Page	0,380	0.550	0.8229	0.011	0.8110	0.007								- 1
ale	0/8/2000	0.755	1.150	0.6022	0.010		- 1								- 1.
aster	PW /														1
talus	5-16 Pass	0.405	0.600	0.8202	0.007	0.8135	0.007								- 1
ola ester	6/6/2000 PW	0.B55	1.300	0.8020	0.011										
- and f	. /	23200	-2455	Option and	47000										
italus	5-17 V Pass	0.375 0.580	0.545	0.8212 0.6176	0.009	0.8124	0.009								
als ester	6/6/2000 PW	0.845	1.300	0.7982	0.014										- 1
u siei				0200000000	1200020	2022	2200000								
latus	5-10 Pags	0.320	0.480	0.8083	0.007	0.8154	0.005								
ato oster	6/8/2000 PS	1.100	1,600	0.8209	0.006										
- 3101															Į

	h: February/Ma	rch	Tostera: P		Location:	Herizon Shap	220 +/-			400 +/-				
	D-1-1D	Date	Standard, F	Ambient deasured, F	Difference %	Standard, F	Mensured, F	Difference %	Standard, F	Messured, F		Amb.	220	400
robe	Probe/ID 3-1	Dato 2/2/09	59.0	60.0	-0.19%	214.0	215.0	-0.15%	406.D	411.0	-0.58%	pans	pass	22nd
robe	3-2	TC deleched			0.00%	200		0.00%	401.0	400.0	0.00%	0026	pass	pncs
roba	3-3	3/11/09	61.0	60.0	0.19%	228.0	228.0	0.00%	401.0 406.0	405.0	0.12%		pass	pass
robo	3-4	3/11/09	60.0	60.0	0.00%	227.0	227.0 217.0	-0.15%	398.0	399.0	-0.12%		pasa	pass
adaı	3-5	2/2/09	62.0	62.0	0.00%	216.0	223.0	-1.34%	445.0	444.0	0.11%		pass	pass
robe	3-6	2/2/09	61.0	60.0	0.00%	214.0	223.0	0.00%			0.00%		•	
tope	3-7	TC Detriched	60.0	60.0	0.00%	210.0	215.0	-0.75%	423.0	430.0	-0.79%	pass	pass	pass
ador	3-8	2/3/09	60.0	0.00	0.00%	210.0	210.0	0.00%			0.00%	- Carlos (1997)		
robe	3-9	not in use 2/3/09	60.0	61.0	-0.19%	200.0	203.0	-0.45%	399.0	403.0	-0.47%	pass	pass	pass
Probe odor	3-10 3-11	3/11/09	59.0	59.0	0.00%	231.0	230.0	0.14%	398.0	398.0	0.00%	pass	pass	puss
Probe Probe	3-12	not in use			0.00%			0.00%		373	0.00%			
,topo	3-13	6/5/2009	75,1	75.0	0.02%	238.0	234.0	0.57%	440.0	441.0	-0.11%		paon	page
Jopo	3-14	6/5/2009	75.3	75.1	0.04%	262.0	265.0	-0.42%	436.0	440.0	-0.45%		aasq	pass
pope	4-1	3/11/09	59.0	59.0	0.00%	220.0	220.0	0.00%	409.0	407.0	0.12% -0.57%		388q	pass
Probe	4-2	2/6/09	60.0	61.0	-0.19%	229.0	230.0	-0.15%	415.0 396.0	420.0 393.0	0.35%		pass	pass
robo	4-3	2/10/09	58.0	58.0	%QQ.0	204.0	210.0	-0.90%	390.0	391.0	-0.12%		PASS	pass
robe	4-4	2/10/09	58.0	58.0	0.00%	219.0	225.0	-0.86% -0.30%	440.0	449.0	-1,00%		pass	pass
Probe	4-5	2/10/09	58.0	57.0	0.19%	209.0	211.0	-0.74%	411.0	410.0	0.11%		pass	2289
Probe	4-6	2/6/09	62.0	62.0	0.00%	214.0	218.0	0.00%	410.0	420.0	-1.15%		pess	pass
robe	4-7	2/10/09	58.0	5B.0	0.00%	200.0 224.0	200.0 223.0	0.15%	398.0	396.0	0.23%	pasa	pase	page
robe	4-8	2/4/09	61.0	60.0	0.19%	220.0	220.0	0.00%	410.0	410.0	0.00%	DAGS	pass	pass
oftebe 6	4-9	3/11/09	59.0	59.0	0.00%	218.0	226.0	-1.18%	410.0	402.0	0.92%	PASS	pass	pass
Probe	4-10	2/10/09	64.0	53.0		210.0	220.0	0.00%	110.0		0.00%	,	.•	
Probe	4-11	TC Delached			0.00%			0.00.0			0.00%	l		
robe	4-12	TC Delached		60.0	0.00%	221.0	219.0	0.29%	402.0	400.0	0.23%	pass	pass	pass
Probe	4-13	3/11/09	61.0	0,00	0.00%	221.0	2.0.0	0.00%		and the State	0.00%			
Proba	5-1	not in use	60.0	60.0	0.00%	216.0	220.0	-0.30%	410.0	411.0	-0.11%	pass	pass	pass
Probo	5-2	3/11/09	60.0	00.0	0.00%	2.10.0		0.00%			0.00%			
Probo	5-3	not in use	59.0	59.0	0.00%	204.0	206.0	-0.30%	403.0	409.0	-0.70%		pass	pass
Piepo	5-4	2/9/09	60.0	61.0	-0.18%	219.0	219.0	0.00%	401.0	405.0	-0.46%		pass	pass
Probe	5.5	3/11/09 2/9/09	59.0	59.0	0.00%	212.0	216.0	-0.60%	405.0	405.0	0.00%		pass	pass
tobe	5-6	2/9/09	58.0	58.0	0.00%	205.0	202.0	0.45%	388.0	395.0	-0.83%	ps25	pass	pass
edor	5-7 5-8	2/10/09	58.0	58.0	0.00%	206.0	212.0	2,000.0	396.0	399.0	~0.35%	pass	buss	pass
otope .	5-9	5/8/09	67.0	67.0	0.00%	231.0	230.0	0.14%	437.0	439.0	-0.22%	равв	pass	buse
odor Orobo	5-10	3/11/09	60.0	60.0	0.00%	219.0	219.0	0.00%	401.0	405.0		pass	pass	pass
otopo otopo	5-10	TC detached			2,00,0	100		0.00%		90	0.00%			
Probe	5-12	4/21/2009	70.0	69.0	0.19%	221.0	223.0	-0.29%	410.0	408.0	0.23%		pass	bess
roba	5-13	4/21/2009	70.0	69.0	0.19%	215.0	219.0	-0.59%	396.0	398.0		pass	pass	poss
Proba	5-14	6/5/2009	72.0	72.2	-0.04%	261.D	258.D	0.42%	360.0	358.0		pass	pass	bess
Probe	5-15	6/5/2009	72.4	73.4	-0.19%	230.4	230.8	-0.06%	408.0	408.2	-0.02%		pass	pn55
Probe	5-16	6/5/2009	75.4	76.6	-0.22%	204.4	204.8	-0.06%	40B.6	409.4	-0.09%		pass	pass
Probe	5-17	6/5/2009	75.0	75.0	0.00%	265.0	267.0	-0.28%	402.0	403.D	-0.12%		pass	pass
Probo	6-1	2/9/09	61.0	58,0	0.58%	199.0	204.0	-0.76%	405.0	406.0	-0.12%		pass	pass
Probe	6-2	3/11/09	59.0	59.0	0.00%	220.0	220,0	0.00%	390.0	389.0		pass	pass	pass
Probo	6-3	2/9/09	60.0	57.0	0.58%	232.0	228.0	0.58%	412.0	420.0	-0.92% 0.00%	pass	pass	pnes
Probo	6-4	nat in use			0.00%		12025	0.00%	440.0	444.0	-0.11%		pass	pass
Probo	6-5	3/11/09	60.0	61.0	-0.18%	223.0	220.0	0.44%	410.0	411.0 406.0	-0.11%		pass	pass
Probo	6-6	2/13/09	59.0	60.0	-0.19%	193.0	197.0	-0.61%	401.0	385.0	-0.24%		pase	2229
Probe	7-1	3/11/09	59.0	59.0	0.00%	221.0	220.0	0.15%	383.0	419.0	0.90%		pass	acaq
Probe	7-2	2/9/09	60.0	57.0	0.58%	233.0	240.0	-1.01%	427.0	415.0	3700.0	paso	Pero	Pare
Probo	7-3	not in uso			0.00%			0.00%	405.0	415.0		равв	pass	page
Probe	7-4	2/9/09	61.0	58.0	0.58%	203.0	204.0	-0.15%	386.0	385.0	0.12%		PASS	PBSS
Probo	7-5	2/9/09	60.0	57.0	0.58%	218.0	211.0	1.03% -0.91%	385.0	383.0	0.24%		pass	pass
Probe	7-6	2/9/09	60.0	57.0	0.58%	199.0	205.0	0.00%	410.0	411.0	-0.1156		pasa	pass
Probe	7-7	5/5/09	62.0	62,0	0.00%	208.0	208.0 202.0	0.60%	380.0	386.0	-0.71%		pess	P855
Probe	7-8	2/9/09	60.0	57.0	0.58%	205.0	202.0	0.00%	555.0		0.00%			
Probe	8-1				0.00%	200.0	206.0	0.45%	409.0	422.0	-1.50%	past	P855	pass
Probe	8-2	2/9/09	60.0	58.0	0.38%	209.0	200.0	0.00%	.,,,,,,,	(0.00%	107.75.57	.*b	8
Probe	9-1	not in use	I		0.00%			0.00%			0.00%	l		
Probe	9-2	not in use		65.5	0.00%	217.0	222.0	-0.74%	379.0	389.0	-1.19%	pass	poss	pass
Probe	10-1	2/12/09	66.0	65.0	0.19% -0.19%	199.0	198.0	0.15%	400.0	410.0	100000	DB02	p#55	pass
Probe	10-2	2/13/09	58.0	59.0	-0.18% . 0.00%	180,0	100.0	0.00%		10.07000	0.00%	*******	B0785 Ga783	1.0
Probe	10-3	not in use	I		0.00%			0.00%			0.00%			
Probe	10-4	not in use	58.0	59.0	-0.19%	208.0	204.0	0.60%	378.D	370.0	0.96%	pass	bus	assq
Probe	10-5	2/13/09 no! In use	69.0	68.4	0.11%	230.0	228.0	0.28%	404.0	392.0	1.39%	pass	pass	pass
Probe	10-6	3/11/09	60.0	81.0	-0.19%	223.0	222.0	0.15%	390.0	391.0	-0.12%	pass	paes	pass
Probe Deska	10-7 10-8	not in use	60.0	01.0	0.00%			0.00%			0.00%			
Probe Probe	10-8 11-1	2/12/09	58.0	57.0	0.15%	194.0	198.0	-0.61%	383.0	394.0	-1.31%	pass	pass	pass
Probe Probe	11-2	not in use	1	2	0.00%		maratik	0.00%			0.00%	·		
FS Pilot	76-1	not in use	I		0.00%			0.00%			0.00%			
FS Pitot	10-5	3/11/09	60.0	61.0	-0.18%	219.0	221.0	-0.28%	388.0	386.0	0.24%		pass	рвяз
FS Pitot	140-3	3/11/09	60.0	60.0	0.00%	226.0	229.0	-0.44%	389.0	387.0	0.24%		pass	pass
FS Pitot	146-2	3/11/09	60.0	61.0	-0.19%	220.0	228.0	-1.18%	395.0	396.0	-0.12%		pass	pass
Gas Probe TC	1	3/11/09	60.0	61.0	-0.19%	229.0	225.0	0.58%	407.0	405.0	0.23%		pass	baes
Gas Probe TC	2	3/20/09	66.0	66.0	0.00%	230.0	232.0	-0.29%	416.0	415.0	0.11%		pass	рпва
Gas Probe TC	3	3/12/09	60.0	60.0	0.00%	210.0	211.0	-0.15%	401.0	400.0	0.12%		pess	pass
FS Thermocouple		3/12/09	61.0	60.0	0.19%	227.0	225.0	0.29%	0.000	398.0	0.12%		2204	pass
FS Thermocouple		3/12/09	60.0	60.0	0.00%	219.0	218.0	0.15%	383.0	385.0	-0.24%		pasa	pass
FS Thormocouple		3/12/09	60.0	60.0	0.00%	227.0	225.0	0.29%	413.0	412.0	0.11%		pass	pass
FS Thermocouple		3/12/09	60.0	61.0	-0.19%	220.0	222.0	-0.28%	404.0	405.0	-0.12%		pass	
FS Thermocouple		3/12/09	61.0	62.0	-0.19%	225.0	225.0	0.00%	398.0	395.0	0.35%	pass	pass	pass
PS Thermacouple					0.00%		, , , , , , , , , , , , , , , , , , , ,	0.00%			0.00%		h##*	
FS Thermocouple		3/12/08	61.0	62.D	-0.19%	220.0	221.0	-0.15%	405.0	405.0	0.00%	bass	past	pass
FS Thermocouple		not in use	70000000		2°00.0		1000000	0.00%		100 -	0.00%	Date	D004	
FS Thermocouple		3/12/09	60.0	60.0	0.00%	219.0	221.0	-0.29%	410.0	409.0	0.11%	huten	pass	P855
FS Thermocouple		- 10 - 10 MAR			0.00%			0.00%			0.00%			
FS Thermocouple			I		0.00%			0.00%	0/2/07/07	13231-	0.00%			B
FS Thermocouple		3/12/09	60.0	0.83	0.38%	218.0	220.0	-0.30%	401.0	401.0	0.00%		pass	pase
FS Thermocouple		3/12/09	61.0	61.0	0.00%	221.0	220.0	0.15%	400.0	401.0	-0.12%		pass	-pass
FS Thermocouple		3/12/09	60.0	60.0	0.00%	223,0	227.0	-0.59%	418.0	415.0	0.34%	bass	buss	pass
	4.00		-500.000		0.00%			0.00%			0.00%			

FS Thermocouple P6
Standard Tharmocouples (SN#)

	July/August	i estors:	PS, PTH, JMF Ambient	I, KHK		220 +/-	Harizon Shap		400 +/-	
Thermocouple Indicator	Channel	Standard, F	Ambient Measured, F	Difference %	Standard, F	220 +/- Measured, F	Difference %	Standard, F	Measured, F	Difference 9
										2.10
Meter Box 4 8/3/2009	STACK PROBE	75 75	74 77	0.19% -0.37%	200 200	201 201	-0.15% -0.15%	400 400	401 401	-0.12°
5.5.2502	FILTER	75	75	0.00%	200	202	-0.30%	400	401	-0.12
	IMPINGER	75	75	0.00%	200	201	-0.15%	400	400.4	-0.05
	METER IN METER OUT	75 75	76.6 77	-0.30% -0.37%	200 200	201.5 200.9	-0.23% -0.14%	400 400	402 400.6	-0.23 -0.07
Meler Box 5	STACK	100	97	0.54%	200	198	0.30%	400	397	0.35
8/3/2009		100	96	0.71%	200	198	0.30%	400	395	0.58
	FILTER	100	98 99	0.36% 0.18%	200 200	197 201	0.45% -0.15%	400 400	395 400	0.569
	AUX	100	103	-0.54%	200	206	-0.91%	400	404	-0.479
	METER IN	100	99	0.18%	200	198	0.30%	400	400	0.005
Meter Box 6	METER OUT STACK	100 100	101	-0.18% -0.11%	200	200.6	-0.15% -0.09%	400	400.7	-0.369 -0.089
8/3/2009		100	101.3	-0.23%	200	201.6	-0.24%	400	402	-0.239
	FILTER	100	101.4	-0.25%	200	201.1	-0.17%	400	400.3	-0.129
	IMPINGER METER IN	100 100	100.4 100.3	-0.07% -0.05%	200 200	200.3 200.2	-0.05% -0.03%	400 400	400.3	-0.035 -0.035
	METER OUT	100	100	0.00%	200	200.2	-0.03%	400	399.7	0.039
Meter Box 7	STACK	75 75		14.03%	200 200		30.32%	400 400		46.535 46.535
	PROBE	75		14.03% 14.03%	200		30.32% 30.32%	400		46.53%
	IMPINGER	75		14.03%	200		30.32%	400		46.53%
	AUX	75 75		14.03% 14.03%	200 200		30.32%	400 400		46.539 46.539
	METER OUT	75 75		14.03%	200		30.32%	400		46.53%
Meter Box 6	STACK	75	75	0.00%	200	199	0.15%	400	399	0.125
7/7/2009	PROBE	75 75	74 75	0.19% 0.00%	200 200	200 200	0.00%	400 400	400 400	0.00%
	IMPINGER	75	75	0.00%	200	199	0.00% 0.15%	400	399	0.00%
	AUX	75	75	0.00%	200	199	0.15%	400	399	0.12%
	METER IN	75 75	75 76	0.00%	200 200	109 199	0.15%	400 400	399 399	0.12%
Meter Box 9	METER OUT	100	96	0.00%	200	198	0.15%	400	396	0.12%
8/3/2009	PROBE	100	96	0.71%	200	198	0.30%	400	396	0.47%
	FILTER	100 100	97 96	0.54% 0,71%	200 200	198 198	0.30%	400 400	396 396	0.47% 0.47%
	AUX	100	97	0.64%	200	198	0.30%	400	396	0.47%
	METER IN	100	97	0.54%	200	19B	0.30%	400	396	0.47%
Meter Box 13	METER OUT STACK	100 100	101	-0.18%	200	198	-0.15%	400	39 <u>6</u> 401	-0.12%
8/19/2009	PROBE	100	99	0.18%	200	200	0.00%	400	399	0.12%
	FILTER	100	101	-0.18%	200	200	0.00%	400	400	0.00%
	IMPINGER AUX	10D 100	102 101	-0.36% -0.18%	200 200	202 201	-0.30% -0.15%	400 400	401 401	-0.12% -0.12%
	METER IN	100	101	-0.18%	200	201	-0.15%	400	401	-0.12%
	METER OUT	100	101	-0.18%	200	201	-0.15%	400	401	-0.12%
Meler Box 14 7/13/2009	PROBE	75 75	74 75	0.19%	225 200	225 201	0.00%	400 400	398 399	0.23% 0.12%
	FILTER	75	72	0.56%	200	197	0.45%	400	396	0.47%
	IMPINGER	75 76	74 75	0.19%	200	199	0.15%	400	399 398	0.12% 0.23%
	AUX METER IN	75	74	0.60%	200 200	200 199	0.00%	400	398	0.23%
	METER OUT	75	74	0.19%	200	199	0.15%	400	398	0.23%
Liter Meter 15 8/10/2009	Probe	100	101 101	-0.18% -0.18%	200 200	202 202	-0.30%	400 400	401 403	-0.12% -0.35%
6/10/2009	Filter Aux-1	100	103	-D.54%	200	202	-0.30% -0.61%	400	403	-0.35%
	Aux-2	100	103	-0.54%	200	204	-0.61%	400	404	-D.47%
	METER IN	100 100	103 103	-0.54%	200 200	204 204	-0.61%	400 400	403 404	-0.35% -0.47%
Iter Meter 16	Probe	100	102	-0.36%	200	204	-0.61% -0.15%	400	401	-0.12%
8/10/2009	Filter	100	89	0.16%	200	199	0.15%	400	400	0.00%
	Aux-1 Aux-2	100 100	103 103	-0.54% -0.54%	200 200	204 204	-0.61% -0.61%	400 400	404 404	-0.47% -0.47%
	METER IN	100	100	0.00%	200	201	-0.07%	400	400	0.00%
	METER DUT	100	100	0.00%	200	201	-0.15%	400	400	0.00%
iter Meter 17 8/10/2009	Probe	100	99 101	0.18% -0.18%	200 200	200 202	-0.30%	400 400	399 401	0.12% -0.12%
	Aux-1	100	102	-0.36%	200	203	-0.45%	400	402	-0.23%
	Aux-2	100	102	-0.36%	200	203	-0.45%	400	402	-0.23%
	METER IN	100	101	-0.18% 17.67%	200 200	203 202	-0.45% -0.30%	400 400	403 402	-0.35% -0.23%
Aeler Box 19	STACK	100	101	-0.18%	200	202	-0.30%	400	400	0.00%
8/19/2009	PROBE	100	100	0.00%	200	201	-0.15%	400	401	-0.12%
	FILTER	100 100	100 100	0.00%	200	200 202	0.00% -0.30%	400 400	400 400	0.00%
	AUX	100	102	-0.36%	200	202	-0.30%	400	400	0.00%
	METER IN	100	100	0.00%	200	202	-0.30%	400	401	-0.12%
luke 074	METER OUT	100	100	0.00%	200		-0.15% 0.00%	400	399	0.12%
	2			0.00%			0.00%			0.00%
luke 197	1			0.00%			0.00%			0.00%
luke 198	1			0.00%			0.00%			0.00%
	2			0.00%		1200	0.00%			0.00%
luke 227	1		i ia	0.00%			0.00%			0.00%
	2			0.00%		-	0.00%		_	0.00%
uke 228										

Thermocouple Calibrations

		Testers:	ps, ny	Location:	Horizon Shop	
		Ambient	-		Heated	
Meterbox	Standard, F	Measured, F	Difference %	Standard, F	Measured, F	Difference %
4 In	64.0	65.0	-0.19%	245.0	246.0	-0.14%
1/7/09 Out	64.0	65.0	-0.19%	260.0	261.0	-0.14%
5 In	62.0	63.0	-0.19%	210,0	212.0	-0.30%
1/8/09 Out	63.0	64.0	-0.19%	186.0	186.0	0.00%
6 In	64.0	64.0	0.00%	239.0	238.0	0.14%
1/7/09 Out	65.0	65.0	0.00%	225.0	224.0	0.15%
7 In	62.0	61.0	0.19%	265.0	265.0	0.00%
1/7/09 Out	62.0	61.0	0.19%	265.0	264.0	0.14%
8 In	65.0	66.0	-0.19%	240.0	239.0	0.14%
1/7/09 Out	64.0	63.0	0.19%	237.0	236.0	0.14%
9 In	62.0	62.0	0.00%	222.0	222.0	0.00%
1/7/09 Out	63.0	63.0	0.00%	223.0	223.0	0.00%
13 In	63.0	64.0	-0.19%	260.0	258.0	0.28%
1/7/09 Out	64.0	64.0	0.00%	260.0	260.0	0.00%
14 In	61.0	60.0	0.19%	227.0	227.0	0.00%
1/7/09 Out	65.0	64.0	0.19%	218.0	218.0	0.00%
19 !n	64.0	65.0	-0.19%	207.0	207.0	0.00%
1/7/09 Out	64.0	64.0	0.00%	218.0	218.0	0.00%
		Ambient			Heated	
Liter Meter	Standard, F	Measured, F	Difference %	Standard, F	Measured, F	Difference %
15 In	62.0	62.0	0.00%	188.0	188.0	0.00%
1/8/09 Out	64.0	64.0	0.00%	228.0	228.0	0.00%
16 In	63.0	63.0	0.00%	206.0	205.0	0.15%
1/8/09 Out	64.0	65.0	-0.19%	231.0	231.0	0.00%
17 In	63.0	63.0	0.00%	256.0	254.0	0.28%
1/8/09 Out	64.0	65.0	-0.19%	207.0	206.0	0.15%
Standard TCs (SN#)	T 1001-1	200602	200701	200702	200703	

Horizon Engineering Thermocouples Jan thru Feb 2009.xls

			Testers:	*********	Location:					
			Ambient			High (200 +/-)			Ice	
	Date	Standard, F	Measured, F	Difference %	Standard, F	Measured, F	Difference %	Standard, F	Measured, F	Difference %
Sample Box - impinger out	2010 P. C.	275-22-77					<i>y</i> *	194.990.40	25 245 2	
017	3/11/2009		60.0	0.00%	×	×		32.0	31.0	0.20%
018	3/11/2009	60.0	60.0	0.00%	x	x		32.0	32.0	0.00%
. 019	3/11/2009	60.0	60.0	0.00%	×	×		32.0	32.0	0.00%
020	:3/11/2009	60.0	60.0	0.00%	x	×		32.0	32.0	0.00%
TRS 156				0.00%	×	×				0.00%
172	3/11/2009	60.0	60.0	0.00%	x	×		32.0	32.0	0.00%
173	3/11/2009	60.0	60.0	0.00%	x	×		32.0	32.0	0.00%
184	3/11/2009	60.0	59.0	0.19%	×	×		32.0	32.0	0.00%
185	3/11/2009	60.0	60.0	0.00%	х	×		32.0	33.0	-0.20%
186	3/11/2009	60.0	60.0	0.00%	x	×	1	32.0	32.0	0.00%
187	3/11/2009	60.0	60.0	0.00%	x	×		32.0	33.0	-0.20%
188	3/11/2009	60.0	60.0	0.00%	x	×		32.0	33.0	-0.20%
189	3/11/2009	60.0	60.0	0.00%	×	×		32.0	32.0	0.00%
TRS 190				0.00%	×	×	- 1			0.00%
229	3/11/2009	60.0	60.0	0.00%	×	×		32.0	32.0	0.00%
230	3/11/2009	60.0	60.0	0.00%	×	×		32.0	32.0	0.00%
327	3/11/2009	60.0	59.0	0.19%	X	×	1	32.0	31.0	0.20%
328	3/11/2009	60.0	60.0	0.00%	x :	x	1	32.0	32.0	0.00%
329	3/11/2009	60.0	60.0	0.00%	×.	×	.7	32.0	32.0	0.00%
331	3/11/2009	60.0	59.0	0.19%	x	x		32,0	32.0	0.00%
Sample Box - oven										
017	3/11/2009	60.0	61.0	-0.19%	210.0	211.0	-0.15%	x	x	
		60.0	60.0	0.00%	211.0	211.0	0.00%	×	×	
019	3/11/2009	60.0	62.0	-0.38%	210.0	216.0	-0.90%	х	×	
020	3/11/2009	60.0	60.0	0.00%	206.0	208.0	-0.30%	X	x	
156	3/11/2009	60.0	60.0	0.00%	202.0	206.0	-0.60%	x	x	
172	3/11/2009	60.0	63.0	-0.58%	211.0	208.0	0.45%	×	×	
173	3/11/2009	60.0	60.0	0.00%	210.0	215.0	-0.75%	×	×	
184	3/11/2009	60.0	60.0	0.00%	202.0	200.0	0.30%	×	x	
185	3/11/2009	60.0	60.0	0.00%	195.0	198.0	-0.46%	×	x	
186	3/11/2009	60.0	59.0	0.19%	199.0	. 201.0	-0.30%	×	×	
187	3/11/2009	60.0	58.0	0.38%	207.0	207.0	0.00%	x	X	
188	3/11/2009	60.0	60.0	0.00%	210.0	210.0	0.00%	×	x	
189	3/11/2009	60.0	61.0	-0.19%	212.0	212.0	0.00%	×	x	
190	3/11/2009	60.0	60.0	0.00%	208.0	208.0	0.00%	×	x	
229	3/11/2009	60.0	60.0	0.00%	210.0	210.0	0.00%	×	×	
230	3/11/2009	60.0	60.0	D.00%	213.0	213.0	0.00%	×	×	
327	3/11/2009	60.0	60.0	0.00%	204.0	207.0	-0.45%	x	x	
328	3/11/2009	60.0	60.0	0.00%	200.0	203.0	-0.45%	×	×	
329	3/11/2009	60.0	60.0	0.00%	207.0	206.0	0.15%	×	×	
331	3/11/2009	60.0	60.0	0.00%	209.0	210.0	-0.15%	×	x	

Standard Thermocouples (SN#)

T 1001-1

200602

200701

200702

200703

٠ 🛬 🔭

TELEPHONE 254-6524 (ARCA CODE 503)

4233 N.E. 1477H AVENUE

P. D. BDX 20116

FORTLAND, DREGON 9722

CERTIFICATE

, ABORA.	
FOR LADVKA,	
Type K Thermocouple	
1/4" x 36" wAplug	
SeriaL# 200701, 2007017 SeriaL# 200701, 2007017 SeriaL# 200701, 2007017 SeriaL# 200701	
Hamiltonia D. C. Company Compa	
Submitted By	
Horizon Engineering	
13585 NE Whittaker Way	
Portland, OR 97230 5 7 A NO D	
<u>T/C #</u> 32°F 212°F 1.3 200702 +.3 -1.0	
200703 +.59	
Certified By: Fluke Model 724 Serial# 9806098	

The accuracy stated on this certificate is traceable to the NATIONAL BUREAU OF STANDARDS through certification documents on file in the Metrology Laboratory of the Grant Edgel Company.

Resubmission Date:

Test Conditions		Authorized Signatures
AMBIENT TEMP.:	68°F	PERFORMED BY: 86
REL. HUMIDITY:	45%	PERFORMED B1: // p
DATE:	6-4-09	
report no. :	09F-4 .	APPROVED BY: Bib Edgel
SERVICE ORDER:	20507	APPROVED BY: // AUD COSE
P.O. NUMBER:		RESUBMISSION DATE: 6-4-10
- 100 - 244		1

2227

4233 N. E. 147TH AVENUE

F. O. BOX 20116

PORTLAND, DREGON 97221

CERTIFICATE

	ABUKA.
FOR	
Type K Thermoco	uple O
1/8" x_3" w/pjru	g A Land Land Report Land
Serial# 200602	GRANT EDGEL PRIMARY STANDARDS LABORATORY
Submitted By	DATE (7)
Horizon Engimee	rilli
13585 NE Whitta	
Portland, OR	97230 5 TANDA
Test Error 32°F8 212°F6	* g * c
Certified By:	Fluke Model 724 Serial# 9806098 Resubmission Date: 11-18-09

The accuracy stated on this certificate is traceable to the NATIONAL BUREAU OF STANDARDS through certification documents on file in the Metrology Laboratory of the Grant Edgel Company.

Test Conditions		Authorized Signatures
AMBIENT TEMP: 68°F		PERFORMED BY: RG
REL. HUMIDITY:	45%	PERFORMED B1: // V
DATE:	6-4-09	
REPORT NO. :	09F-3	ARREQUED BY. Bob Edgel
SERVICE ORDER:	20507	APPROVED BY: 120 Cage
P.O. NUMBER:		RESUBMISSION DATE: 6-4-10

TELEPHONE 254-6524 (AREA CODE 500)

4233 N. E. 147TH AVENUE

P. D. 60X 20116

PORTLAND, DREGON 97220

CERTIFICATE

FOR		LABL	RAX	a.
Altek Ca.	librator			
Series 2	2 "		Etales 1	5
Serial#	10663701	PRIMARY STANDARD	DGEL PE LABORATORY IDAILOR	and the state of t
•	-	10 017		
Submitted	d By	DATE	(n
Horizon l	Englineeri			E
13585 NE	Whittake	e Way	Q.	
Portland,	OR 97	230 <u>5 7 A</u>	NOP	
Test 0°F 50°F 100°F 150°F 250°F	Error +.8 +.7 +.7 +.7 +.9	Test 300°F 350°F 400°F 450°F 500°F	Error +.8 +.8 +.9 +.8 +.3	Certified By: Fluke Model 724 Serial# 9806098 Resubmission Date: 11-18-09

The accuracy stated on this certificate is truceable to the NATIONAL BUREAU OF STANDARDS through certification documents on file in the Metrology Laboratory of the Grant Edgel Company.

Test Con	difions	Authorized Signature		
AMBIENT TEMP.:	68°F	De la companya de la		
REL. HUMIDITY:	45%	PERFORMED BY:		
DATE:	6-4-09			
REPORT NO.:	09F-2	APPROVED BY: Bob Edgel		
SERVICE ORDER:	20507	APPROVED BY: Bob Edgel		
P.O. NUMBER:		RESUBMISSION DATE: 6-4-10		

TELEPHONE 254-6524 (AREA COOK SOD)

4233 N. E. 147TH AVENUE 1 7 F. D

F. D. BOX 20116

PORTLAND, DREGON 97220

CERTIFICATE

FOR	3	LADL	1KA,	w)
Altek Ca	librator)
Series 2	2 70		10年40年10日	70
Serial#	10400304	GRANT I	IDGEL DS LANGRATORY	~
	Name of the last o	10		
Submitte	d By)A(E		(7)
Horizon :	Engineeri			•
13585 NE	Whittaker	Hay_	Q.	
Portland	OR 9723	0 5 1 A	NOP	
Test 0°F 50°F 100°F 150°F 200°F	Error #.5 5 6 5	Test 300°F 350°F 400°F 450°F 500°F	Error 5 5 6 6	Certified By: Fluke Model 724 Serial# 9806098 Resubmission Date; 11-18-09

The accuracy stated on this certificate is traceable to the NATIONAL BUREAU OF STANDARDS through certification documents on file in the Metrology Laboratory of the Grant Edgel Company.

Test Conditions			Authorized Signatures
AMBIENT TEMP.:	68°F		Planton Tax
REL. HUMIDITY:	45%		PERFORMED BY:
DATE:	6-4-09		
report no. :	09F-1	<u></u>	APPROVED BY: Bob Edgel
SERVICE ORDER:	20507		APPROVED BY: 1800 CO 30 C
P.O. NUMBER:			RESUBMISSION DATE: 6-4-10

Nozzle Calibrations

	Nozzle ID	M	leasuremer	nts	Averages	Date
Quartz		/				
	Q1 /	0.3160	0.3155	0.3155	0.3157	7/10/2009
	Q2 V	0.2625	0.2630	0.2620	0.2625	5/1/2009
	Q3 V	0.2515	0.2525	0.2530	0.2523	5/1/2009
	Q4	0.3200	0.3195	0.3195	0.3197	7/10/2009
	Q5	0.2750	0.2755	0.2740	0.2748	7/14/2009
	Q6	0.2608	0.2620	0.2621	0.2616	7/10/2009
	Q7	0.3110	0.3095	0.3095	0.3100	7/10/2009
	Q8	0.2574	0.2560	0.2565	0.2566	7/10/2009
	Q9	0.3630	0.3645	0.3645	0.3640	8/5/2009
	Q10	0.3695	0.3705	0.3700	0.3700	8/5/2009
1-748-33	Q11	0.3735	0.3745	0.3750	0.3743	8/5/2009
	Q12	0.3700	0.3720	0.3710	0.3710	8/5/2009
	Q13	0.3690	0.3675	0.3675	0.3680	8/5/2009
	Nozzle ID	M	easuremen	its	Averages	Date
Pyrex		24// 25//				
-	1	could not le	ocate			
	2	could not lo	ocate			
	3	0.2595	0.2610	0.2605	0.2603	7/10/2009
	4	0.2605	0.2615	0.2610	0.2610	7/10/2009
	5	0.2625	0.2630	0.2630	0.2628	8/3/2009
	6	0.2645	0.2650	0.2640	0.2645	8/3/2009
	7	0.2640	0.2635	0.2645	0.2640	8/3/2009
	8	0.2645	0.2650	0.2650	0.2648	8/3/2009
	9	0.2570	0.2580	0.2580	0.2576	8/3/2009
	10	0.3135	0.3140	0.3130	0.3135	2/12/2009
	11	0.3100	0.3105	0.3110	0.3105	8/3/2009
	12	0.3175	0.3130	0.3135	0.3147	5/1/2009
	13	0.3175	0.3185	0.3190	0.3183	8/3/2009
	14	0.3070	0.3085	0.3085	0.3080	5/1/2009
	15	0.3130	0.3110	0.3120	0.3120	5/1/2009
	16	0.3115	0.3115	0.3100	0.3110	5/1/2009
	17	0.4925	0.4940	0.4940	0.4935	5/1/2009
	18	0.5125	0.5135	0.514	0.5133	05/2009

13585 NE Whitaker Way • Portland, OR 97230 Phone (503) 255-5050 • Fax (503) 255-0505 www.horizonengineering.com

July 3, 2009 Horizon Engineering Shop Barometer Calibration

National Weather Service (PDX Int'l Airport)	29.90"Hg
TV 1	29.9"Hg
TV 2	29.80"Hg
TV 3	29.9"Hg
Shop	30.1"Hg
Free standing (TV4) V	30.0"Hg
Shortridge #1	29.8"Hg
Shortridge #2	29.8"Hg
Shortridge #3	29.9"Hg

All pressures are absolute, read at the Horizon Engineering shop. Margery P. Heffernan

SCOTT-MARRIN, INC.

6531 BOX SPRINGS BLVD. • RIVERSIDE, CA 92507 TELEPHONE (951) 653-6780 • FAX (951) 653-2430 12-29-00

Report Of Analysis EPA Protocol Gas Mixtures

HENG01

TO: Horizon Engineering/Infrared NW

Attn: David Bagwell 13585 NE Whitaker Way Portland, OR 97230 (503) 255-5050 REPORT NO: 54881-01

REPORT DATE: December 18, 2008[]

CUSTOMER PO NO: 005335

CYLINDER NUMBER: CC35012		CYLINDER S	CYLINDER SIZE: 150A (141 std cu fl)		CYLINDER PRESSURE: 2000 psig		
COMPONENT	CONCENTRATION (viv ± EPA UNCERTAINTY		ANALYZER MAKE, MODEL, SIN, DETECTION	EXPIRATION DATE	REPLICATE ANALYSIS DATA		
Carbon dioxide	5.97 ± 0.06 %	GMIS CYLINDER #: CC83094 @ 8.09 %	Varian Model 3400 Serial # 10680 Thermal Conductivity Gas Chromolography LAST CAL DATE: 12/2/2008	12/5/2010 MEAN:	12/5/2008 5.96 % 5.98 % 5.98 % 5.97 %		
Carbon monoxide	279.3 ± 1.2 ppm	GMIS CYLINDER #: 1L3309 @ 283.5 ppmv	Carle Insts Model 8000 Serial # 8249 Methanation/FID Gas Chromatography LAST CAL DATE: 11/17/200	12/15/2010 B MEAN:	12/8/2008 12/15/2008 279.6 ppm 279.3 ppm 279.2 ppm 279.2 ppm 279.9 ppm 279.2 ppm 279.6 ppm 279.2 ppm		
Nitric oxide NOx Nitrogen dioxide	48.7 ± 0.7 ppm 48.7 ppm < 0.2 ppm	GMIS CYLINDER #: CC108765 @ 50.1 ppmv	Bovar/W Res Model 922M Serial # VD92284841 Continuous UV Photometry LAST CAL DATE: 11/23/2008	12/18/2010 MEAN:	12/8/2008 12/18/2008 48.8 ppm 48.5 ppm 48.5 ppm 48.9 ppm 48.9 ppm 48.9 ppm 48.7 ppm 48.7 ppm		
O2-free Nitrogen	Balance						

ppm = umole/mole

% = mole-%

The above analyses were performed in accordance with Procedure G1 of the EPA Traceability Protocol, Report Number EPA-600/R97/121, dated September 1997.

The above analyses are invalid if the cylinder pressure is less than 150 psig.

ANALYST:

APPROVED

J. T. Marrin

65

COTT-MARRIN, INC.

6531 BOX SPRINGS BLVD. RIVERSIDE, CA 92507 TELEPHONE (951) 653-6780 • FAX (951) 653-2430

Report Of Analysis EPA Protocol Gas Mixtures

HENG01

TO: Horizon Engineering/Infrared NW

Attn: David Bagwell 13585 NE Whitaker Way Portland, OR 97230 (503) 255-5050

REPORT NO: 55012-02

REPORT DATE: January 14, 20091

CUSTOMER PO NO: 005335

CYLINDER NUMBER: CC1859

CYLINDER SIZE: 150A (141 std cu ft)

CYLINDER PRESSURE: 2000 psig

			사용: 30mm : 1907 (1915년 - 1915년 - 1916년 - 1916		
COMPONENT	CONCENTRATION (v/v) ± EPA UNCERTAINTY	REFERENCE STANDARD	ANALYZER MAKE, MODEL, S/N, DETECTION	EXPIRATION DATE	REPLICATE ANALYSIS DATA
Carbon dioxide	12.52 ± 0.15 %	GMIS CYLINDER #: CC51172 @ 17.99 %	Varian Model 3400 Serial # 10680 Thermal Conductivity Gas Chromotography LAST CAL DATE: 12/2/2008	12/26/2010 MEAN:	12/26/2008 12.53 % 12.56 % 12.48 % 12.52 %
Carbon monoxide	463 ± 4 ppm	GMIS CYLINDER #: ALM021481 @ 548 ppmv	Carle Insts Model 8000 Serial # 8249 Methanation/FID Gas Chromatography LAST CAL DATE: 12/17/200	12/29/2010 8 MEAN:	12/21/2008 12/29/200 462 ppm 464 ppm 462 ppm 462 ppm 463 ppm 462 ppm 462 ppm 463 ppm
Nitric oxide NOx Nitrogen dioxide	87.6 ± 0.7 ppm 87.6 ppm < 0.4 ppm	GMIS CYLINDER #: CC68777 @ 101.1 ppmv	Bovar/W Res Model 922M Serial # VD92284841 Continuous UV Photometry LAST CAL DATE: 12/31/2008	1/13/2011 3 MEAN:	12/31/2008 1/13/2008 87.2 ppm 87.5 ppm 87.5 ppm 87.6 ppm 87.6 ppm 87.7 ppm 87.4 ppm 87.6 ppm
O2-free Nitrogen	Balance				The control of the co

ppm = umole/mole

% = mole-%

The above analyses were performed in accordance with Procedure G1 of the EPA Traceability Protocol, Report Number EPA-600/R97/121, dated September 1997.

The above analyses are invalid if the cylinder pressure is less than 150 psig.

The only liability of this company for ges which falls to comply with this analysis shall be replacement or reanalysis thereof by the company without extra cost.

66

35

6531 BOX SPRINGS BLVD. • RIVERSIDE, CA 92507 TELEPHONE (951) 653-6780 • FAX (951) 653-2430

Report Of Analysis EPA Protocol Gas Mixtures

HENG01

TO: Horizon Engineering/Infrared NW

Attn: David Bagwell 13585 NE Whitaker Way Portland, OR 97230 (503) 255-5050 REPORT NO: 54404-01

REPORT DATE: September 11, 2008[]

CUSTOMER PO NO: 005167

CYLINDER NUMB	ER: CC53889	CYLINDER S	IZE: 150A (141 std cu ft)	CYLINDER PR	RESSURE: 2000 psig
COMPONENT	CONCENTRATION (v/v ± EPA UNCERTAINTY	REFERENCE STANDARD	ANALYZER MAKE, MODEL, S/N, DETECTION	EXPIRATION DATE	REPLICATE ANALYSIS DATA
Carbon dioxide	21.76 ± 0.09 %	GMIS CYLINDER #: CC51172 @ 17.99 %	Varian Model 3400 Serial # 10680 Thermal Conductivity Gas Chromotography LAST CAL DATE: 7/8/2008	7/14/2010 MEAN:	7/14/2008 21.74 % 21.76 % 21.77 % 21.76 %
Carbon monoxide	850 ± 9 ppm	GMIS CYLINDER #: 1L3318 @ 1117 ppmv	Carle Insts Model 8000 Serial # 8249 Methanation/FID Gas Chromatography LAST CAL DATE: 7/9/2008	7/18/2010 MEAN:	7/10/2008 7/18/2008 849 ppm 850 ppm 851 ppm 849 ppm 851 ppm 852 ppm 850 ppm 850 ppm
Nitric oxide NOx Nitrogen dioxide	181.7 ± 1.2 ppm 181.7 ppm < 0.9 ppm	GMIS CYLINDER #: CC72078 @ 254.3 ppmv	Bovar/W Res Model 922M Serial # VD92284841 Continuous UV Photometry LAST CAL DATE: 8/26/2008	9/11/2010 MEAN:	9/3/2008 9/11/2008 181.4 ppm 181.7 ppm 181.8 ppm 181.6 ppm 181.7 ppm 181.7 ppm
O2-free Nitrogen	Balance				The section of the se

ppm = umole/mole

% = mole-%

The above analyses were performed in accordance with Procedure G1 of the EPA Traceability Protocol, Report Number EPA-600/R97/121, dated September 1997.

The above analyses are invalid if the cylinder pressure is less than 150 psig.

ANALYST:

APPROVED:

J. T. Marrir

67

SCOTT-MARRIN, INC. 6531 BOX SPRINGS BLVD. RIVERSIDE, CA 92507

TELEPHONE (951) 653-6780 • FAX (951) 653-2430

Report Of Analysis EPA Protocol Gas Mixtures

HENG01

TO: Horizon Engineering/Infrared NW

Attn: David Bagwell 13585 NE Whitaker Way Portland, OR 97230 (503) 255-5050

REPORT NO: 54685-01

REPORT DATE: November 10, 2008

4 4 - 17 - 0 8 CUSTOMER PO NO: 005296

CYLINDER NUMBER: SA5697

CYLINDER SIZE: 150A (141 std cu ft)

CYLINDER PRESSURE: 2000 osig

OTEMBER NUMBER, ORGOT		O 1 FINDEIV S	CTEMBER SIZE, 180A (141 ald carry		OTLINDEN PRESSURE, 2000 paig		
COMPONENT	CONCENTRATION (v/v) ± EPA UNCERTAINTY	REFERENCE STANDARD	ANALYZER MAKE, MODEL, SIN, DETECTION	EXPIRATION DATE	REPLICATE ANALYSIS DATA		
Oxygen	11.61 ± 0.06 %	GMIS	Varian Model 3800	11/6/2011	11/6/2008		
		CYLINDER #:	Serial #		11.62 %		
95		CC51181	Thermal Conductivity		11.61 %		
		@ 10.04 %	Gas Chromotography		11.60 %		
			LAST CAL DATE: 11/3/2008	MEAN:	11.61 %		
Nitrogen	Balance						

ppm = umole/mole

% = mole-%

The above analyses were performed in accordance with Procedure G1 of the EPA Traceability Protocol, Report Number EPA-600/R97/121, dated September 1997.

The above analyses are invalid if the cylinder pressure is less than 150 psig.

ANALYST:

M.S.Calhoun

QA/QC Documentation Procedures Analyzer Interference Response Data

Introduction The QA procedures outlined in the U. S. Environmental Protection Agency (EPA) test methods are followed, including procedures, equipment specifications, calibrations, sample extraction and handling, calculations, and performance tolerances. Many of the checks performed have been cited in the Sampling section of the report text. The results of those checks are on the applicable field data sheets in the Appendix.

Continuous Analyzer Methods Field crews operate the continuous analyzers according to the test method requirements, and Horizon's additional specifications. On site quality control procedures include:

- Analyzer calibration error before initial run and after a failed system bias or drift test (within ± 2.0% of the calibration span of the analyzer for the low, mid, and high-level gases or 0.5 ppmv absolute difference)
- System bias at low-scale (zero) and upscale calibration gases (within ± 5.0% of the calibration span or 0.5 ppmv absolute difference)
- Drift check (within ±3.0% of calibration span for low, and mid or highlevel gases, or 0.5 ppmv absolute difference)
- System response time (during initial sampling system bias test)
- Checks performed with EPA Protocol 1 or NIST traceable gases
- Leak free sampling system
- Data acquisition systems record 10-second data points or one-minute averages of one second readings
- NO₂ to NO conversion efficiency (before each test)
- Purge time (= 2 times system response time and will be done before starting run 1, whenever the gas probe is removed and re-inserted into the stack, and after bias checks)
- Sample time (at least two times the system response time at each sample point)
- Sample flow rate (within approximately 10% of the flow rate established during system response time check)
- Interference checks for analyzers used will be included in the final test report
- Average concentration (run average = calibration span for each run)
- Stratification test (to be done during run 1 at three(3) or twelve(12)
 points according to EPA Method 7E; Method 3A, if done for molecular
 weight only, will be sampled near the centroid of the exhaust;
 stratification is check not normally applicable for RATAs)

Manual Equipment QC Procedures On site quality control procedures include pre- and post-test leak checks on trains and pitot systems. If pre-test checks indicate problems, the system is fixed and rechecked before starting testing. If post-test leak checks are not acceptable, the test run is voided and the run is repeated. Thermocouples and readouts are verified in the field to read ambient prior to the start of any heating or cooling devices. Nozzles are checked for nicks or dents and are measured on three diameters twice each year.

Sample Handling Samples taken during testing are handled to prevent contamination from other runs and ambient conditions. Sample containers are glass, Teflon™, or polystyrene (filter petri dishes) and are pre-cleaned by the laboratory and in the Horizon Engineering shop. Sample levels are marked on containers and are verified by the laboratory. All particulate sample containers are kept upright and are delivered to the laboratory by Horizon personnel.

Data Processing Personnel performing data processing double-check that data entry and calculations are correct. Results include corrections for field blanks and analyzer drift. Any abnormal values are verified with testing personnel and the laboratory, if necessary.

After results are obtained, the data processing supervisor validates the data with the following actions:

- verify data entry
- check for variability within replicate runs
- account for variability that is not within performance goals (check the method, testing, and operation of the plant)
- · verify field quality checks

Equipment Calibrations Periodic calibrations are performed on each piece of measurement equipment according to manufacturers' specifications and applicable test method requirements. The Oregon Department of Environmental Quality (ODEQ) <u>Source Testing Calibration Requirements</u> sheet is used as a guideline. Calibrations are performed using primary standard references and calibration curves where applicable.

Thermocouples Thermocouples are calibration checked against an NIST traceable thermocouple and indicator system every six months at three points. Thermocouple indicators and temperature controllers are checked using a NIST traceable signal generator. Readouts are checked over their usable range and are adjusted if necessary (which is very unusual).

Pitots Every six months, S-type pitots are calibrated in a wind tunnel at three points against a standard pitot using inclined manometers. They are examined for dents and distortion to the alignment, angles, lengths, and proximity to thermocouples before each test. Pitots are protected with covers during storage and handling until they are ready to be inserted in the sample ports.

Dry Gas Meters Dry gas meters used in the manual sampling trains are calibrated at three rates using a standard dry gas meter that is never taken into the field. The standard meter is calibration verified by the Northwest Natural Gas meter shop once every year. Dry gas meters are post-test calibrated with documentation provided in test reports.

13585 NE Whitaker Way • Portland, OR 97230 Phone (503) 255-5050 • Fax (503) 255-0505 www.horizonengineering.com

INTERFERENCE RESPONSE TEST

Date of Test: 3/13/02

Name: Tim Hertel

Analyzer: Type / Model: O2 / Servomex

Serial Number: 000038

Test Gas	Concentration, ppmv or %	Analyzer Output Response, %	% of Span (25 %)
SO ₂	170.3 ppmv	0.0	0.0
*CO ₂	9.1%	0.0	0.0
**CO	540 ppmv	0.0	0.0

^{*}Used bottle of CO₂ at 100% concentration and diluted it with 100% N2 to get a concentration of about 10% CO₂.

Bias Check:

Test Gas	Concentration, %	Analyzer Output Response, %	Bias Check (%)
O ₂	20.95	20.9	0.2

Performance Specifications:

	<i>i</i> +	<u>Allowable</u>	
<u>Analyzer</u>	EPA Ref.	Interference	Gas Values To Introduce Into Analyzers
	Method	(% of analyzer span)	(EPA Method 20)
SO ₂	6C	7%	200±20 ppm
O_2	6C	7%	20.9±1 percent
CO ₂	6C	7%	10±1 percent
CO	20	2%	500±50 ppm

Note: Concentration for SO₂ was slightly lower than listed; 170.3 ppmv was the closest concentration cylinder available at the time of the interference checks.

^{**} Used CO cylinder with 5% concentration and diluted it with 100% N_2 to get a concentration of about 500 ppmv CO.

13585 NE Whitaker Way • Portland, OR 97230 Phone (503) 255-5050 • Fax (503) 255-0505 www.horizonengineering.com

INTERFERENCE RESPONSE TEST

Date of Test: 3/01 & 3/07/2002 Name: Tim Hertel

Analyzer: Type / Model: CO2 / Servomex 1400 Serial Number: 000166

Results:

Test Gas	Concentration, ppmv or %	Analyzer Output Response, %	% of Span (25 %)
SO ₂	170.3 ppmv	0.0	0.0
O ₂	20.95%	0.0	0.0
*CO	534 ppmv	0.0	0.0

^{*} Used CO cylinder with 5% concentration and diluted it with 100% N_2 to get a concentration of about 500 ppmv CO.

Bias Check:

Test Gas	Concentration, %	Analyzer Output Response, %	Bias Check (%)
**CO ₂	10.3	10.3	0.0

^{**} Used bottle of CO_2 at 100% concentration and diluted it with 100% N_2 to get a concentration of about 10% CO_2 .

Performance Specifications:

	,	Allowable	
<u>Analyzer</u>	EPA Ref.	<u>Interference</u>	Gas Values To Introduce Into Analyzers
	Method	(% of analyzer span)	(EPA Method 20)
SO ₂	6C	7%	200±20 ppm
O_2	6C	7%	20.9±1 percent
CO ₂	6C	7%	10±1 percent
CO	20	2%	500±50 ppm

Note: Concentration for SO₂ was slightly lower than listed; 170.3 ppmv was the closest concentration cylinder available at the time of the interference checks.

Correspondence

Source Test Plan and Correspondence Permit (Selected Pages)

e-mailed 6/24/09

13585 NE Whitaker Way • Portland, OR 97230 Phone (503) 255-5050 • Fax (503) 255-0505 www.horizonengineering.com

June 24, 2009

Project No. 3302

Ms. Madonna Narvaez Environmental Engineer USEPA Region 10, AWT-107 1200 Sixth Avenue Seattle, WA 98101

Mr. Gerry Pade Puget Sound Clean Air Agency 1904 3rd Ave, Suite 105 Seattle, WA 98101-3317

Re: Source Testing:

Saint-Gobain Containers 5801 East Marginal Way S. Seattle, Washington 98134

This correspondence is notice that Horizon Engineering is to do source testing for the above-referenced facility, scheduled for August 4, 2009. This will serve as the Source Test Plan unless changes are requested prior to the start of testing.

- 1. Source to be Tested: Glass Melting Furnace No. 4
- 2. Purpose of the Testing: To demonstrate compliance with the National Emission Standard for Hazardous Air Pollutants for Glass Manufacturing Area Sources, 40 CFR Part 63, Subpart SSSSS for affected sources.
- 3. Source Description: Furnace No. 4 is an end-port regenerative furnace and is air-fuel fired, also utilizing natural gas as its primary fuel source. As a regenerative furnace, its increased fuel efficiency is realized by utilizing the heat generated in the combustion process to preheat the air and fuel used in further combustion processes. Additionally, increased thermal efficiency is realized by the regenerative furnace in providing heat to the primary glass-melting process itself.
- Pollutant to be Tested: Chrome

5. Test Methods to be Used: Testing will be conducted in accordance with EPA Methods in Title 40 Code of Federal Regulations Part 60 (40 CFR 60), Appendix A, July 1, 2007.

Flow Rate:

EPA Methods 1 and 2 (pitot traverses with EPA Method 29) EPA Method 3/3A (integrated bag samples w/analyzers)

 CO_2 and O_2 : Moisture:

EPA Method 4 (incorporated with EPA Method 29)

Chrome:

EPA Method 29 (isokinetic impinger technique with analysis

by ICP-OES/ICP-MS)

- 6. Continuous Analyzer Gas Sampling: EPA Method 3/3A will be sampled at one point near the exhaust centroid if it is not done for a correction. Particulate and gas sampling will be simultaneous.
- 7. Quality Assurance /Quality Control (QA/QC): Documentation of the procedures and results will be presented in the source test report for review. This documentation will include at least the following:

Continuous analyzer QC procedures for Tedlar bags: Field crews will operate the analyzers according to the test method requirements and Horizon's additional specifications. On-site quality control procedures include:

- Daily calibration (zero and span) and calibration error (linearity) checks
- Tedlar bags will be analyzed after daily calibration and calibration error checks
- Checks performed with EPA Protocol 1gases
- Data acquisition systems record one-minute averages of one second readings

Manual equipment QC procedures: Operators will perform pre- and post-test leak checks on the sampling system and pitot lines. Thermocouple systems are checked for ambient temperature before heaters are started. Nozzles are inspected for nicks or dents and pitots are checked for alignment before each test. Pre- and post-test calibrations on the meter boxes will be included with the report, along with semi-annual calibrations on the pitots, thermocouples, and nozzles. Blank reagents are submitted to the laboratory with the samples. Liquid levels are marked on sample jars in the field and are verified by the laboratory.

- 8. Number of Sampling Replicates and their Duration: Three (3) test runs of approximately 120 minutes each will be performed on the Glass Melting Furnace No. 4.
- 9. Reporting Units for Results: Test results will be expressed as concentrations (gr/dscf), as rates (lb/hr), and on a production basis (lb/ton of glass melted).

10. Horizon Engrg. Contacts:

David Bagwell or

Jason Bouwman (503) 255-5050 (503) 255-0505

Fax

E-mail

dbagwell@horizonengineering.com

Madonna Narvaez, EPA Region X and Gerry Pade, Puget Sound Clean Air Agency, June 24, 2009

ibouwman@horizonengineering.com

11. Parent Company Contact: Jayne Browning

(765) 741-7112 (765) 741-4846

Fax

E-mail

jayne.e.browning@saint-gobain.com

12. Source Site Personnel: Marlon Trigg

(206) 768-6221

Mobile Fax

(206) 730-1888 (206) 768-6266

E-mail

Marlon.Trigg@saint-gobain.com

13. Regulatory Contacts: Gerry Pade or

Tom Hudson

(206) 689-4065 (206) 689-4026

Fax

(206) 343-7522

E-mail gerryp@pscleanair.org

tomh@pscleanair.org

Madonna Narvaez

(206) 553-2117

Fax

(206) 553-0110

E-mail narvaez.madonna@epa.gov

- 14. Applicable Process/Production Information: Process operating data and production information that characterizes the source operation is considered to be:
 - Fuel usage during each run

Amount of glass melted

All other normally recorded process information

Process information is to be gathered by the Source Site Personnel and provided to Horizon for inclusion in the report.

The source must operate at a normal rate during testing.

- 15. Control Device Operating Parameters: N.A.
- 16. Other Considerations:
 - It is requested that the sixty day test plan notification be waived because of the variability of the production schedule and the short time in which the green glass will be produced.
 - Each furnace exhaust has been checked for cyclonic flow during past testing and no cyclonic conditions exist at any exhaust. Cyclonic flow checks were done on September 22, 2005 and February 25, 2009 and are documented in those test reports.
- 17. Administrative: Unless notified prior to the start of testing, this test plan is considered to be approved for compliance testing of this source. A letter

Madonna Narvaez, EPA Region X and Gerry Pade, Puget Sound Clean Air Agency, June 24, 2009

acknowledging receipt of this plan and agreement on the content (or changes as necessary) would be appreciated.

The Agency will be notified of any changes in source test plans prior to testing. It is recognized that significant changes not acknowledged, which could affect accuracy and reliability of the results, could result in test report rejection.

Source test reports will be prepared by Horizon Engineering and will include all results and example calculations, field sampling and data reduction procedures, laboratory analysis reports, and QA/QC documentation. Source test reports will be submitted to you within 60 days of the completion of the field work, unless another deadline is agreed upon. Saint-Gobain Containers should send one (1) copy of the completed source test report to you at the address above.

Any questions or comments relating to this test plan should be directed to me.

Sincerely,

David Bagwell, QSTI Managing Member

& it Agnell

Horizon Engineering

CC:

Jayne Browning, Saint-Gobain Containers, Inc. Marlon Trigg, Saint-Gobain Containers, Inc. Valerie Krulic, Saint-Gobain Containers, Inc.

x 1

Agency Use Only: Reg No:

PUGET SOUND CLEAN AIR AGENCY

1904 3rd Ave Ste 105 Seattle WA 98101-3317

Telephone: (206)689-4052; Fax: (206)343-7522 www.pscleanair.org

facilitysubmittal@pscleanair.org

COMPLIANCE TEST NOTIFICATION

This Notification of intended action does not constitute approval by the Agency nor does it satisfy a requirement for a test plan, if one exists.

Date Logged:

Agency Use Uniy: Keg No:	Date Received:			Date Logged:	
Facility Name: Saint-Gobain Containers					tact Information for Test
				e: Marlo	y. -
Facility Address (include city/state/zip)	i		Phon	ne: 206-	730-1888
5801 East Marginal Way South			Fax:	206-768	3-6266
Seattle, Washington 98134			E-Ma	iil: <u>Marlo</u>	on.Trigg@saint-gobain.com
Test Contractor: Horizon Engineering					ctor Contact Information
Test Contractor Mailing Address:			Name	e: David	Bagwell
13585 NE Whitaker Way			Phon	ie: 503-2	255-5050
Portland, Oregon 97230			Fax:	503-255	5-0505
1 5 ttana, 510g5tt 57250			E-Ma	il: <u>dbag</u>	well@horizonengineering.com
Testing Dates: August 4, 2009					
Emission Unit	Pollutant Tested		Metholito be	od(s) used)	Purpose for the Test (see Note below)
Glass Melting Furnace No. 4			1ethod 4, & 2	ds 1, 2,	To demonstrate compliance with the National Emission Standard for Hazardous Air Pollutants for Glass Manufacturing Area Sources, 40 CFR Part 63, Subpart SSSSS for affected sources
Any Test Method Deviation's?	Attachments to	this No	tificat	ion? ☑	Yes (list below) No
Yes (attach explanation) ☑ No Method Deviations: Furnace No. 3 only has one port	Source Test Pla	an			4 <u>3</u> 4
Written Test Plan Required?					
☑ Yes No Unknown					,
Person Submitting Notification:	l	_		Affiliation	on:
David Bagwell			i	Horizon	Engineering
NOTE IT AND DOUBLE OF A STATE OF	V. 1100.0.1	721 21	13.00		at Count Class Air Annay Basyletians (I

Date Received:

NOTE: For example, NSPS/NESHAP Subpart, citation, NOC Order of Approval #, PSD, Puget Sound Clean Air Agency Regulations (I, II, or III), RATA, or Other. Please include the specific requirement if you have it.

4. Part 63 is amended by adding subpart SSSSSS to read as follows:

Subpart SSSSSS—National Emission Standards for Hazardous Air Pollutants for Glass Manufacturing Area Sources

Applicability and Compliance Dates Sec.

63.11448 Am I subject to this subpart?63.11449 What parts of my plant does this subpart cover?

63.11450 What are my compliance dates?

Standards, Compliance, and Monitoring Requirements

63.11451 What are the standards for new and existing sources?

63.11452 What are the performance test requirements for new and existing sources?

63.11453 What are the initial compliance demonstration requirements for new and existing sources?

63.11454 What are the monitoring requirements for new and existing sources?

63.11455 What are the continuous compliance requirements for new and existing sources?

Notifications and Records

63.11456 What are the notification requirements?

63.11457 What are the recordkeeping requirements?

Other Requirements and Information

63.11458 What General Provisions apply to this subpart?

63.11459 What definitions apply to this subpart?

63.11460 Who implements and enforces this subpart?

63.11461 [Reserved]

Tables to Subpart SSSSSS of Part 63

Table 1 to Subpart SSSSSS of Part 63— Emission Limits

Table 2 to Subpart SSSSS of Part 63— Applicability of General Provisions to Subpart SSSSS

Applicability and Compliance Dates

§ 63.11448 Am I subject to this subpart?

You are subject to this subpart if you own or operate a glass manufacturing facility that is an area source of hazardous air pollutant (HAP) emissions and meets all of the criteria specified in paragraphs (a) through (c) of this section.

(a) A glass manufacturing facility is a plant site that manufactures flat glass, glass containers, or pressed and blown glass by melting a mixture of raw materials, as defined in § 63.11459, to produce molten glass and form the molten glass into sheets, containers, or other shapes.

(b) An area source of HAP emissions is any stationary source or group of stationary sources within a contiguous area under common control that does not have the potential to emit any single HAP at a rate of 9.07 megagrams per year (Mg/yr) (10 tons per year (tpy)) or more and any combination of HAP at a rate of 22.68 Mg/yr (25 tpy) or more.

(c) Your glass manufacturing facility uses one or more continuous furnaces to produce glass that contains compounds of one or more glass manufacturing metal HAP, as defined in § 63.11459, as raw materials in a glass manufacturing batch formulation.

§ 63.11449 What parts of my plant does this subpart cover?

(a) This subpart applies to each existing or new affected glass melting furnace that is located at a glass manufacturing facility and satisfies the requirements specified in paragraphs (a)(1) through (3) of this section.

 The furnace is a continuous furnace, as defined in § 63.11459.

(2) The furnace is charged with compounds of one or more glass manufacturing metal HAP as raw materials.

(3) The furnace is used to produce glass, which contains one or more of the glass manufacturing metal HAP as raw materials, at a rate of at least 45 Mg/yr (50 tpy).

(b) A furnace that is a research and development process unit, as defined in § 63.11459, is not an affected furnace

under this subpart.

(c) An affected source is an existing source if you commenced construction or reconstruction of the affected source on or before September 20, 2007.

(d) An affected source is a new source if you commenced construction or reconstruction of the affected source after September 20, 2007.

(e) If you own or operate an area source subject to this subpart, you must obtain a permit under 40 CFR part 70 or 40 CFR part 71.

§ 63.11450 What are my compliance dates?

(a) If you have an existing affected source, you must comply with the applicable emission limits specified in § 63.11451 of this subpart no later than December 28, 2009. As specified in section 112(i)(3)(B) of the Clean Air Act and in § 63.6(i)(4)(A), you may request that the Administrator or delegated authority grant an extension allowing up to 1 additional year to comply with the applicable emission limits if such additional period is necessary for the installation of emission controls.

(b) If you have a new affected source, you must comply with this subpart according to paragraphs (b)(1) and (2) of this section.

(1) If you start up your affected source on or before December 26, 2007, you must comply with the applicable emission limit specified in § 63.11451 no later than December 26, 2007.

(2) If you start up your affected source after December 26, 2007, you must comply with the applicable emission limit specified in § 63.11451 upon initial startup of your affected source.

(c) If you own or operate a furnace that produces glass containing one or more glass manufacturing metal HAP as raw materials at an annual rate of less than 45 Mg/yr (50 tpy), and you increase glass production for that furnace to an annual rate of at least 45 Mg/yr (50 tpy), you must comply with the applicable emission limit specified in § 63.11451 within 2 years of the date on which you increased the glass production rate for the furnace to at least 45 Mg/yr (50 tpy).

(d) If you own or operate a furnace that produces glass at an annual rate of at least 45 Mg/yr (50 tpy) and is not charged with glass manufacturing metal HAP, and you begin production of a glass product that includes one or more glass manufacturing metal HAP as raw materials, and you produce at least 45 Mg/yr (50 tpy) of this glass product, you must comply with the applicable emission limit specified in § 63.11451 within 2 years of the date on which you introduced production of the glass product that contains glass manufacturing metal HAP.

(e) You must meet the notification requirements in § 63.11456 according to the schedule in § 63.11456 and in 40 CFR part 63, subpart A. Some of the notifications must be submitted before you are required to comply with emission limits specified in this subpart.

Standards, Compliance, and Monitoring Requirements

§ 63.11451 What are the standards for new and existing sources?

If you are an owner or operator of an affected furnace, as defined in § 63.11449(a), you must meet the applicable emission limit specified in Table 1 to this subpart.

§ 63.11452 What are the performance test requirements for new and existing sources?

(a) If you own or operate an affected furnace that is subject to an emission limit specified in Table 1 to this subpart, you must conduct a performance test according to paragraphs (a)(1) through (3) and paragraph (b) of this section.

(1) For each affected furnace, you must conduct a performance test within 180 days after your compliance date and report the results in your Notification of Compliance Status, except as specified in paragraph (a)(2) of this section.

- (2) You are not required to conduct a performance test on the affected furnace if you satisfy the conditions described in paragraphs (a)(2)(i) through (iii) of this section.
- (i) You conducted a performance test on the affected furnace within the past 5 years of the compliance date using the same test methods and procedures specified in paragraph (b) of this section.
- (ii) The performance test demonstrated that the affected furnace met the applicable emission limit specified in Table 1 to this subpart.
- (iii) Either no process changes have been made since the test, or you can demonstrate that the results of the performance test, with or without adjustments, reliably demonstrate compliance with the applicable emission limit.
- (3) If you operate multiple identical furnaces, as defined in § 63.11459, that are affected furnaces, you are required to test only one of the identical furnaces if you meet the conditions specified in paragraphs (a)(3)(i) through (iii) of this section.
- (i) You must conduct the performance test while the furnace is producing glass that has the greatest potential to emit the glass manufacturing metal HAP from among the glass formulations that are used in any of the identical furnaces.
- (ii) You certify in your Notification of Compliance Status that the identical furnaces meet the definition of identical furnaces specified in § 63.11459.
- (iii) You provide in your Notification of Compliance Status documentation that demonstrates why the tested glass formulation has the greatest potential to emit the glass manufacturing metal HAP.
- (b) You must conduct each performance test according to the requirements in § 63.7 and paragraphs (b)(1) through (12) and either paragraph (b)(13) or (b)(14) of this section.
- (1) Install and validate all monitoring equipment required by this subpart before conducting the performance test.
- (2) You may not conduct performance tests during periods of startup, shutdown, or malfunction, as specified in § 63.7(e)(1).
- (3) Conduct the test while the source is operating at the maximum production rate.
- (4) Conduct at least three separate test runs with a minimum duration of 1 hour for each test run, as specified in § 63.7(e)(3).
 - (5) Record the test date.
- (6) Identify the emission source tested.

- (7) Collect and record the emission test data listed in this section for each run of the performance test.
- (8) Locate all sampling sites at the outlet of the furnace control device or at the furnace stack prior to any releases to the atmosphere.
- (9) Select the locations of sampling ports and the number of traverse points using Method 1 or 1A of 40 CFR part 60, appendix A-1.
- (10) Measure the gas velocity and volumetric flow rate using Method 2, 2A, 2C, 2F, or 2G of 40 CFR part 60, appendices A-1 and A-2, during each test run.
- (11) Conduct gas molecular weight analysis using Methods 3, 3A, or 3B of 40 CFR part 60, appendix A-2, during each test run. You may use ANSI/ASME PTC 19.10-1981, Flue and Exhaust Gas Analyses (incorporated by reference—see § 63.14) as an alternative to EPA Method 3B.
- (12) Measure gas moisture content using Method 4 of 40 CFR part 60, appendix A-3, during each test run.
- (13) To meet the particulate matter (PM) emission limit specified in Table 1 to this subpart, you must conduct the procedures specified in paragraphs (b)(13)(i) through (v) of this section.
- (i) Measure the PM mass emission rate at the outlet of the control device or at the stack using Method 5 or 17 of 40 CFR part 60, appendices A-3 or A-6, for each test run.
- (ii) Calculate the PM mass emission rate in the exhaust stream for each test
- (iii) Measure and record the glass production rate (kilograms (tons) per hour of product) for each test run.
- (iv) Calculate the production-based PM mass emission rate (g/kg (lb/ton)) for each test run using Equation 1 of this section.

$$MP = \frac{ER}{P}$$
 (Equation 1)

Where:

- MP = Production-based PM mass emission rate, grams of PM per kilogram (pounds of PM per ton) of glass produced.
- ER = PM mass emission rate measured using Methods 5 or 17 during each performance test run, grams (pounds) per hour.
- P = Average glass production rate for the performance test, kilograms (tons) of glass produced per hour.
- (v) Calculate the 3-hour block average production-based PM mass emission rate as the average of the production-based PM mass emission rates for each test run.
- (14) To meet the metal HAP emission limit specified in Table 1 to this

subpart, you must conduct the procedures specified in paragraphs (b)(14)(i) through (v) of this section.

(i) Measure the metal HAP mass emission rate at the outlet of the control device or at the stack using Method 29 of 40 CFR part 60, appendix A-8, for each test run.

(ii) Calculate the metal HAP mass emission rate in the exhaust stream for the glass manufacturing metal HAP that are added as raw materials to the glass manufacturing formulation for each test

(iii) Measure and record the glass production rate (kilograms (tons) per hour of product) for each test run.

(iv) Calculate the production-based metal HAP mass emission rate (g/kg (lb/ ton)) for each test run using Equation 2 of this section.

$$MPM = \frac{ERM}{P}$$
 (Equation 2)

Where

MPM = Production-based metal HAP mass emission rate, grams of metal HAP per kilogram (pounds of metal HAP per ton) of glass produced.

ERM = Sum of the metal HAP mass emission rates for the glass manufacturing metal HAP that are added as raw materials to the glass manufacturing formulation and are measured using Method 29 during each performance test run, grams (pounds) per hour.

P = Average glass production rate for the performance test, kilograms (tons) of glass produced per hour.

(v) Calculate the 3-hour block average production-based metal HAP mass emission rate as the average of the production-based metal HAP mass emission rates for each test run.

§ 63.11453 What are the initial compliance demonstration requirements for new and existing sources?

(a) If you own or operate an affected source, you must submit a Notification of Compliance Status in accordance with §§ 63.9(h) and 63.11456(b).

(b) For each existing affected furnace that is subject to the emission limits specified in Table 1 to this subpart, you must demonstrate initial compliance according to the requirements in paragraphs (b)(1) through (4) of this section.

(1) For each fabric filter that is used to meet the emission limit specified in Table 1 to this subpart, you must visually inspect the system ductwork and fabric filter unit for leaks. You must also inspect the inside of each fabric filter for structural integrity and fabric filter condition. You must record the results of the inspection and any maintenance action as required in § 63.11457(a)(6).

(2) For each electrostatic precipitator (ESP) that is used to meet the emission limit specified in Table 1 to this subpart, you must verify the proper functioning of the electronic controls for corona power and rapper operation, that the corona wires are energized, and that adequate air pressure is present on the rapper manifold. You must also visually inspect the system ductwork and ESP housing unit and hopper for leaks and inspect the interior of the ESP to determine the condition and integrity of corona wires, collection plates, hopper, and air diffuser plates. You must record the results of the inspection and any maintenance action as required in § 63.11457(a)(6).

(3) You must conduct each inspection specified in paragraphs (b)(1) and (2) of this section no later than 60 days after your applicable compliance date specified in § 63.11450, except as specified in paragraphs (b)(3)(i) and (ii)

(i) An initial inspection of the internal components of a fabric filter is not required if an inspection has been performed within the past 12 months.

(ii) An initial inspection of the internal components of an ESP is not required if an inspection has been performed within the past 24 months.

(4) You must satisfy the applicable requirements for performance tests

specified in § 63.11452.

of this section.

(c) For each new affected furnace that is subject to the emission limit specified in Table 1 to this subpart and is controlled with a fabric filter, you must install, operate, and maintain a bag leak detection system according to paragraphs (c)(1) through (3) of this section.

(1) Each bag leak detection system must meet the specifications and requirements in paragraphs (c)(1)(i)

through (viii) of this section.

(i) The bag leak detection system must be certified by the manufacturer to be capable of detecting PM emissions at concentrations of 1 milligram per dry standard cubic meter (0.00044 grains per actual cubic foot) or less.

(ii) The bag leak detection system sensor must provide output of relative PM loadings. The owner or operator shall continuously record the output from the bag leak detection system using electronic or other means (e.g., using a

strip chart recorder or a data logger). (iii) The bag leak detection system must be equipped with an alarm system that will sound when the system detects an increase in relative particulate loading over the alarm set point established according to paragraph (c)(1)(iv) of this section, and the alarm must be located such that it can be

heard by the appropriate plant personnel.

(iv) In the initial adjustment of the bag leak detection system, you must establish, at a minimum, the baseline output by adjusting the sensitivity (range) and the averaging period of the device, the alarm set points, and the alarm delay time.

(v) Following initial adjustment, you shall not adjust the averaging period, alarm set point, or alarm delay time without approval from the Administrator or delegated authority except as provided in paragraph

(c)(1)(vi) of this section.

(vi) Once per quarter, you may adjust the sensitivity of the bag leak detection system to account for seasonal effects, including temperature and humidity, according to the procedures identified in the site-specific monitoring plan required by paragraph (c)(2) of this section.

(vii) You must install the bag leak detection sensor downstream of the

fabric filter.

(viii) Where multiple detectors are required, the system's instrumentation and alarm may be shared among detectors.

(2) You must develop and submit to the Administrator or delegated authority for approval a site-specific monitoring plan for each bag leak detection system. You must operate and maintain the bag leak detection system according to the site-specific monitoring plan at all times. Each monitoring plan must describe the items in paragraphs (c)(2)(i) through (vi) of this section.

(i) Installation of the bag leak

detection system;

(ii) Initial and periodic adjustment of the bag leak detection system, including how the alarm set-point will be established;

(iii) Operation of the bag leak detection system, including quality

assurance procedures;

(iv) How the bag leak detection system will be maintained, including a routine maintenance schedule and spare parts inventory list;

(v) How the bag leak detection system output will be recorded and stored; and

(vi) Corrective action procedures as specified in paragraph (c)(3) of this section. In approving the site-specific monitoring plan, the Administrator or delegated authority may allow owners and operators more than 3 hours to alleviate a specific condition that causes an alarm if the owner or operator identifies in the monitoring plan this specific condition as one that could lead to an alarm, adequately explains why it is not feasible to alleviate this condition within 3 hours of the time the alarm

occurs, and demonstrates that the requested time will ensure alleviation of this condition as expeditiously as practicable.

(3) For each bag leak detection system, you must initiate procedures to determine the cause of every alarm within 1 hour of the alarm. Except as provided in paragraph (c)(2)(vi) of this section, you must alleviate the cause of the alarm within 3 hours of the alarm by taking whatever corrective action(s) are necessary. Corrective actions may include, but are not limited to the

(i) Inspecting the fabric filter for air leaks, torn or broken bags or filter media, or any other condition that may cause an increase in PM emissions;

(ii) Sealing off defective bags or filter

media:

(iii) Replacing defective bags or filter media or otherwise repairing the control

(iv) Sealing off a defective fabric filter

compartment;

(v) Cleaning the bag leak detection system probe or otherwise repairing the bag leak detection system; or

(vi) Shutting down the process producing the PM emissions.

- (d) For each new affected furnace that is subject to the emission limit specified in Table 1 to this subpart and is controlled with an ESP, you must install, operate, and maintain according to the manufacturer's specifications, one or more continuous parameter monitoring systems (CPMS) for measuring and recording the secondary voltage and secondary electrical current to each field of the ESP according to paragraphs (d)(1) through (13) of this section.
- (1) The CPMS must have an accuracy of 1 percent of the secondary voltage and secondary electrical current, or better.
- (2) Your CPMS must be capable of measuring the secondary voltage and secondary electrical current over a range that extends from a value that is at least 20 percent less than the lowest value that you expect your CPMS to measure, to a value that is at least 20 percent greater than the highest value that you expect your CPMS to measure.

(3) The signal conditioner, wiring, power supply, and data acquisition and recording system of your CPMS must be compatible with the output signal of the

sensors used in your CPMS.

(4) The data acquisition and recording system of your CPMS must be able to record values over the entire range specified in paragraph (d)(2) of this section.

(5) The data recording system associated with your CPMS must have

a resolution of one-half of the required overall accuracy of your CPMS, as specified in paragraph (d)(1) of this

section, or better.

(6) Your CPMS must be equipped with an alarm system that will sound when the system detects a decrease in secondary voltage or secondary electrical current below the alarm set point established according to paragraph (d)(7) of this section, and the alarm must be located such that it can be heard by the appropriate plant personnel.

(7) In the initial adjustment of the CPMS, you must establish, at a minimum, the baseline output by adjusting the sensitivity (range) and the averaging period of the device, the alarm set points, and the alarm delay

time.

(8) You must install each sensor of the CPMS in a location that provides representative measurement of the appropriate parameter over all operating conditions, taking into account the manufacturer's guidelines.

(9) You must perform an initial calibration of your CPMS based on the

procedures specified in the

manufacturer's owner's manual.
(10) Your CPMS must be designed to complete a minimum of one cycle of operation for each successive 15-minute period. To have a valid hour of data, you must have at least three of four equally-spaced data values (or at least 75 percent of the total number of values if you collect more than four data values per hour) for that hour (not including startup, shutdown, malfunction, or out of control periods).

(11) You must record valid data from at least 90 percent of the hours during which the affected source or process

operates.

(12) You must record the results of each inspection, calibration, initial validation, and accuracy audit.

(13) At all times, you must maintain your CPMS including, but not limited to, maintaining necessary parts for routine repairs of the CPMS.

- (e) For each new affected furnace that is subject to the emission limit specified in Table 1 to this subpart and is controlled by a device other than a fabric filter or an ESP, you must prepare and submit a monitoring plan to EPA or the delegated authority for approval. Each plan must contain the information in paragraphs (e)(1) through (5) of this section.
- (1) A description of the device; (2) Test results collected in accordance with § 63.11452 verifying the performance of the device for reducing PM or metal HAP to the levels required by this subpart;

(3) Operation and maintenance plan for the control device (including a preventative maintenance schedule consistent with the manufacturer's instructions for routine and long-term maintenance) and continuous monitoring system;

(4) A list of operating parameters that will be monitored to maintain continuous compliance with the applicable emission limits; and

(5) Operating parameter limits based on monitoring data collected during the performance test.

§ 63.11454 What are the monitoring requirements for new and existing sources?

(a) For each monitoring system required by this subpart, you must install, calibrate, operate, and maintain the monitoring system according to the manufacturer's specifications and the requirements specified in paragraphs (a)(1) through (7) of this section.

(1) You must install each sensor of your monitoring system in a location that provides representative measurement of the appropriate parameter over all operating conditions, taking into account the manufacturer's guidelines.

(2) You must perform an initial calibration of your monitoring system based on the manufacturer's

recommendations.

(3) You must use a monitoring system that is designed to complete a minimum of one cycle of operation for each successive 15-minute period.

(4) For each existing affected furnace, you must record the value of the monitored parameter at least every 8 hours. The value can be recorded electronically or manually.

(5) You must record the results of each inspection, calibration, monitoring system maintenance, and corrective action taken to return the monitoring system to normal operation.

(6) At all times, you must maintain your monitoring system including, but not limited to, maintaining necessary parts for routine repairs of the system.

(7) You must perform the required monitoring whenever the affected furnace meets the conditions specified in paragraph (a)(7)(i) or (ii) of this section.

(i) The furnace is being charged with one or more of the glass manufacturing metal HAP as raw materials.

(ii) The furnace is in transition between producing glass that contains one or more of the glass metal HAP as raw materials and glass that does not contain any of the glass manufacturing metal HAP as raw materials. The transition period begins when the furnace is charged with raw materials

that do not contain any of the glass manufacturing metal HAP as raw materials and ends when the furnace begins producing a saleable glass product that does not contain any of the glass manufacturing metal HAP as raw materials.

(b) For each existing furnace that is subject to the emission limit specified in Table 1 to this subpart and is controlled with an ESP, you must meet the requirements specified in paragraphs

(b)(1) or (2) of this section.

 You must monitor the secondary voltage and secondary electrical current to each field of the ESP according to the requirements of paragraph (a) of this section, or

(2) You must submit a request for alternative monitoring, as described in

paragraph (g) of this section.

(c) For each existing furnace that is subject to the emission limit specified in Table 1 to this subpart and is controlled with a fabric filter, you must meet the requirements specified in paragraphs (c)(1) or (2) of this section.

(1) You must monitor the inlet temperature to the fabric filter according to the requirements of paragraph (a) of

this section, or

(2) You must submit a request for alternative monitoring, as described in

paragraph (g) of this section.

(d) For each new furnace that is subject to the emission limit specified in Table 1 to this subpart and is controlled with an ESP, you must monitor the voltage and electrical current to each field of the ESP on a continuous basis using one or more CPMS according to the requirements for CPMS specified in § 63.11453(d).

(e) For each new furnace that is subject to the emission limit specified in Table 1 to this subpart and is controlled with a fabric filter, you must install and operate a bag leak detection system according to the requirements specified

in § 63.11453(c).

(f) For each new or existing furnace that is subject to the emission limit specified in Table 1 to this subpart and is equipped with a control device other than an ESP or fabric filter, you must meet the requirements in § 63.8(f) and submit a request for approval of alternative monitoring methods to the Administrator no later than the submittal date for the Notification of Compliance Status, as specified in § 63.11456(b). The request must contain the information specified in paragraphs (f)(1) through (5) of this section.

 Description of the alternative addon air pollution control device (APCD).

(2) Type of monitoring device or method that will be used, including the sensor type, location, inspection

procedures, quality assurance and quality control (QA/QC) measures, and data recording device.

(3) Operating parameters that will be monitored.

(4) Frequency that the operating parameter values will be measured and recorded.

(5) Procedures for inspecting the condition and operation of the control device and monitoring system.

- (g) If you wish to use a monitoring method other than those specified in paragraph (b)(1) or (c)(1) of this section, you must meet the requirements in § 63.8(f) and submit a request for approval of alternative monitoring methods to the Administrator no later than the submittal date for the Notification of Compliance Status, as specified in § 63.11456(b). The request must contain the information specified in paragraphs (g)(1) through (5) of this section.
- (1) Type of monitoring device or method that will be used, including the sensor type, location, inspection procedures, QA/QC measures, and data recording device.

(2) Operating parameters that will be monitored.

- (3) Frequency that the operating parameter values will be measured and recorded.
- (4) Procedures for inspecting the condition and operation of the monitoring system.
- (5) Explanation for how the alternative monitoring method will provide assurance that the emission control device is operating properly.

§ 63.11455 What are the continuous compliance requirements for new and existing sources?

- (a) You must be in compliance with the applicable emission limits in this subpart at all times, except during periods of startup, shutdown, and malfunction.
- (b) You must always operate and maintain your affected source, including air pollution control and monitoring equipment, according to the provisions in § 63.6(e)(1)(i).
- (c) For each affected furnace that is subject to the emission limit specified in Table 1 to this subpart, you must monitor the performance of the furnace emission control device under the conditions specified in § 63.11454(a)(7) and according to the requirements in §§ 63.6(e)(1) and 63.8(c) and paragraphs (c)(1) through (6) of this section.

For each existing affected furnace that is controlled with an ESP, you must monitor the parameters specified in § 63.11454(b) in accordance with the requirements of § 63.11454(a) or as

specified in your approved alternative monitoring plan.

(2) For each new affected furnace that is controlled with an ESP, you must comply with the monitoring requirements specified in § 63.11454(d) in accordance with the requirements of § 63.11454(a) or as specified in your approved alternative monitoring plan.

(3) For each existing affected furnace that is controlled with a fabric filter, you must monitor the parameter specified in § 63.11454(c) in accordance with the requirements of § 63.11454(a) or as specified in your approved alternative

monitoring plan.

(4) For each new affected furnace that is controlled with a fabric filter, you must comply with the monitoring requirements specified in § 63.11454(e) in accordance with the requirements of § 63.11454(a) or as specified in your approved alternative monitoring plan.

(5) For each affected furnace that is controlled with a device other than a fabric filter or ESP, you must comply with the requirements of your approved alternative monitoring plan, as required

in § 63.11454(g).

(6) For each monitoring system that is required under this subpart, you must keep the records specified in § 63.11457.

(d) Following the initial inspections, you must perform periodic inspections and maintenance of each affected furnace control device according to the requirements in paragraphs (d)(1) through (4) of this section.

For each fabric filter, you must conduct inspections at least every 12 months according to paragraphs (d)(1)(i)

through (iii) of this section.

(i) You must inspect the ductwork and fabric filter unit for leakage.

(ii) You must inspect the interior of the fabric filter for structural integrity and to determine the condition of the fabric filter.

(iii) If an initial inspection is not required, as specified in § 63.11453(b)(3)(i), the first inspection must not be more than 12 months from the last inspection.

(2) For each ESP, you must conduct inspections according to the requirements in paragraphs (d)(2)(i) through (iii) of this section.

(i) You must conduct visual inspections of the system ductwork, housing unit, and hopper for leaks at least every 12 months.

(ii) You must conduct inspections of the interior of the ESP to determine the condition and integrity of corona wires, collection plates, plate rappers, hopper, and air diffuser plates every 24 months.

(iii) If an initial inspection is not required, as specified in § 63.11453(b)(3)(ii), the first inspection

- must not be more than 24 months from the last inspection.
- (3) You must record the results of each periodic inspection specified in this section in a logbook (written or electronic format), as specified in § 63.11457(c).
- (4) If the results of a required inspection indicate a problem with the operation of the emission control system, you must take immediate corrective action to return the control device to normal operation according to the equipment manufacturer's specifications or instructions.
- (e) For each affected furnace that is subject to the emission limit specified in Table 1 to this subpart and can meet the applicable emission limit without the use of a control device, you must demonstrate continuous compliance by satisfying the applicable recordkeeping requirements specified in § 63.11457.

Notifications and Records

§ 63.11456 What are the notification requirements?

- (a) If you own or operate an affected furnace, as defined in §63.11449(a), you must submit an Initial Notification in accordance with § 63.9(b) and paragraphs (a)(1) and (2) of this section by the dates specified.
- As specified in § 63.9(b)(2), if you start up your affected source before December 26, 2007, you must submit an Initial Notification not later than April 24, 2008 or within 120 days after your affected source becomes subject to the standard.
- (2) The Initial Notification must include the information specified in § 63.9(b)(2)(i) through (iv).
- (b) You must submit a Notification of Compliance Status in accordance with § 63.9(h) and the requirements in paragraphs (b)(1) and (2) of this section.
- (1) If you own or operate an affected furnace and are required to conduct a performance test, you must submit a Notification of Compliance Status, including the performance test results, before the close of business on the 60th day following the completion of the performance test, according to § 60.8 or § 63.10(d)(2).
- (2) If you own or operate an affected furnace and satisfy the conditions specified in § 63.11452(a)(2) and are not required to conduct a performance test, you must submit a Notification of Compliance Status, including the results of the previous performance test, before the close of business on the compliance date specified in § 63.11450.

83

§ 63.11457 What are the recordkeeping requirements?

(a) You must keep the records specified in paragraphs (a)(1) through

(8) of this section.

A copy of any Initial Notification and Notification of Compliance Status that you submitted and all documentation supporting those notifications, according to the requirements in $\S 63.10(b)(2)(xiv)$.

(2) The records specified in § 63.10(b)(2) and (c)(1) through (13).

(3) The records required to show continuous compliance with each emission limit that applies to you, as specified in § 63.11455.

(4) For each affected source, records of production rate on a process throughput basis (either feed rate to the process unit or discharge rate from the process unit). The production data must include the amount (weight or weight percent) of each ingredient in the batch formulation, including all glass manufacturing metal HAP compounds.

(5) Records of maintenance activities and inspections performed on control devices as specified in §§ 63.11453(b) and 63.11455(d), according to paragraphs (a)(5)(i) through (v) of this

section.

(i) The date, place, and time of inspections of control device ductwork, interior, and operation.

Person conducting the inspection. (iii) Technique or method used to

conduct the inspection.

(iv) Control device operating conditions during the time of the inspection.

(v) Results of the inspection and description of any corrective action

(6) Records of all required monitoring data and supporting information including all calibration and maintenance records.

(7) For each bag leak detection system, the records specified in paragraphs (a)(7)(i) through (hi) of this

section.

Records of the bag leak detection

system output;

(ii) Records of bag leak detection system adjustments, including the date and time of the adjustment, the initial bag leak detection system settings, and the final bag leak detection system

settings; and

(iii) The date and time of all bag leak detection system alarms, the time that procedures to determine the cause of the alarm were initiated, the cause of the alarm, an explanation of the actions taken, the date and time the cause of the alarm was alleviated, and whether the alarm was alleviated within 3 hours of the alarm.

(8) Records of any approved alternative monitoring method(s) or test procedure(s).

(b) Your records must be in a form suitable and readily available for expeditious review, according to

§ 63.10(b)(1).

(c) You must record the results of each inspection and maintenance action in a logbook (written or electronic format). You must keep the logbook onsite and make the logbook available to the permitting authority upon request.

(d) As specified in § 63.10(b)(1), you must keep each record for a minimum of 5 years following the date of each occurrence, measurement, maintenance, corrective action, report, or record.

You must keep each record onsite for at least 2 years after the date of each occurrence, measurement, maintenance, corrective action, report, or record, according to § 63.10(b)(1). You may keep the records offsite for the remaining three years.

Other Requirements and Information

§ 63.11458 What General Provisions apply to this subpart?

You must satisfy the requirements of the General Provisions in 40 CFR part 63, subpart A, as specified in Table 2 to this subpart.

§ 63.11459 What definitions apply to this

Terms used in this subpart are defined in the Clean Air Act, in § 63.2, and in this section as follows:

Air pollution control device (APCD) means any equipment that reduces the quantity of a pollutant that is emitted to the air.

Continuous furnace means a glass manufacturing furnace that operates continuously except during periods of maintenance, malfunction, control device installation, reconstruction, or rebuilding.

Cullet means recycled glass that is mixed with raw materials and charged to a glass melting furnace to produce glass. Cullet is not considered to be a raw material for the purposes of this

Electrostatic precipitator (ESP) means an APCD that removes PM from an exhaust gas stream by applying an electrical charge to particles in the gas stream and collecting the charged particles on plates carrying the opposite electrical charge.

Fabric filter means an APCD used to capture PM by filtering a gas stream

through filter media.

Furnace stack means a conduit or conveyance through which emissions from the furnace melter are released to the atmosphere.

Glass manufacturing metal HAP means an oxide or other compound of any of the following metals included in the list of urban HAP for the Integrated Urban Air Toxics Strategy and for which Glass Manufacturing was listed as an area source category: arsenic, cadmium, chromium, lead, manganese, and nickel.

Glass melting furnace means a unit comprising a refractory-lined vessel in which raw materials are charged and melted at high temperature to produce

molten glass.

Identical furnaces means two or more furnaces that are identical in design, including manufacturer, dimensions, production capacity, charging method, operating temperature, fuel type, burner configuration, and exhaust system

configuration and design

Particulate matter (PM) means, for purposes of this subpart, emissions of PM that serve as a measure of filterable particulate emissions, as measured by Methods 5 or 17 (40 CFR part 60, appendices A-3 and A-6), and as a surrogate for glass manufacturing metal HAP compounds contained in the PM including, but not limited to, arsenic, cadmium, chromium, lead, manganese, and nickel.

Plant site means all contiguous or adjoining property that is under common control, including properties that are separated only by a road or other public right-of-way. Common control includes properties that are owned, leased, or operated by the same entity, parent entity, subsidiary, or any

combination thereof.

Row material means minerals, such as silica sand, limestone, and dolomite; inorganic chemical compounds, such as soda ash (sodium carbonate), salt cake (sodium sulfate), and potash (potassium carbonate); metal oxides and other metal-based compounds, such as lead oxide, chromium oxide, and sodium antimonate; metal ores, such as chromite and pyrolusite; and other substances that are intentionally added to a glass manufacturing batch and melted in a glass melting furnace to produce glass. Metals that are naturallyoccurring trace constituents or contaminants of other substances are not considered to be raw materials. Cullet and material that is recovered from a furnace control device for recycling into the glass formulation are not considered to be raw materials for the purposes of this subpart.

Research and development process unit means a process unit whose purpose is to conduct research and development for new processes and products and is not engaged in the manufacture of products for commercial sale, except in a de minimis manner. 84

§ 63.11460 Who implements and enforces this subpart?

(a) This subpart can be implemented and enforced by the U.S. EPA, or a delegated authority such as your State, local, or tribal agency. If the U.S. EPA Administrator has delegated authority to your State, local, or tribal agency, then that agency has the authority to implement and enforce this subpart. You should contact your U.S. EPA Regional Office to find out if this subpart is delegated to your State, local, or tribal agency.

(b) In delegating implementation and enforcement authority of this subpart to

a State, local, or tribal agency under 40 CFR part 63, subpart E, the authorities contained in paragraphs (b)(1) through (4) of this section are retained by the Administrator of the U.S. EPA and are not transferred to the State, local, or tribal agency.

(1) Approval of alternatives to the applicability requirements in §§ 63.11448 and 63.11449, the compliance date requirements in § 63.11450, and the emission limits specified in § 63.11451.

(2) Approval of a major change to test methods under § 63.7(e)(2)(ii) and (f) and as defined in § 63.90.

- (3) Approval of major alternatives to monitoring under § 63.8(f) and as defined in § 63.90.
- (4) Approval of major alternatives to recordkeeping under § 63.10(f) and as defined in § 63.90.

§ 63.11461 [Reserved]

Tables to Subpart SSSSSS of Part 63

As required in § 63.11451, you must comply with each emission limit that applies to you according to the following table:

TABLE 1 TO SUBPART SSSSSS OF PART 63-EMISSION LIMITS

For each	You must meet one of the following emission limits
 New or existing glass melting furnace that produces glass at an annual rate of at least 45 Mg/yr (50 tpy) AND is charged with compounds of arsenic, cadmium, chromium, manganese, lead, or nickel as raw materials. 	must not exceed 0.1 gram per kilogram (g/kg) (0.2 pound per ton (lb/

As stated in § 63.11458, you must comply with the requirements of the NESHAP General Provisions (40 CFR part 63, subpart A), as shown in the following table:

TABLE 2 TO SUBPART SSSSS OF PART 63-APPLICABILITY OF GENERAL PROVISIONS TO SUBPART SSSSSS

Citation	Subject
§ 63.1(a), (b), (c)(1), (c)(2), (c)(5), (e)	Applicability.
§ 63.2	Definitions.
§ 63.3	Units and Abbreviations,
§ 63.4	Prohibited Activities.
§ 63.5	Construction/Reconstruction.
§ 63.6(a), (b)(1)-(b)(5), (b)(7), (c)(1), (c)(2), (c)(5), (e)(1), (f), (g), (i), (j)	Compliance with Standards and Maintenance Requirements.
§ 63.7	Performance Testing Requirements.
§ 63.8(a)(1), (a)(2), (b), (c)(1)-(c)(4), (c)(7)(i)(B), (c)(7)(ii), (c)(8), (d), (e)(1), (e)(4), (f).	Monitoring Requirements.
§ 63.9(a), (b)(1)(i)-(b)(2)(v), (b)(5), (c), (d), (h)-(j)	Notification Requirements.
§ 63.10(a), (b)(1), (b)(2)(i)–(b)(2)(xii)	
§ 63.10(b)(2)(xiv), (c), (f)	Documentation for Initial Notification and Notification of Compliance Status.
§ 63.12	State Authority and Delegations.
§ 63.13	Addresses.
§ 63.14	Incorporations by Reference.
63.15	Availability of Information.
§ 63.15 § 63.16	Performance Track Provisions.

■ 5. Part 63 is amended by adding subpart TTTTTT to read as follows:

Subpart TTTTT—National Emission Standards for Hazardous Air Pollutants for Secondary Nonferrous Metals Processing Area Sources

Applicability and Compliance Dates

Sec.

63.11462 Am I subject to this subpart?63.11463 What parts of my plant does this subpart cover?

63.11464 What are my compliance dates?

Standards, Compliance, and Monitoring Requirements

- 63.11465 What are the standards for new and existing sources?
- 63.11466 What are the performance test requirements for new and existing sources?
- 63.11467 What are the initial compliance demonstration requirements for new and existing sources?
- 63.11468 What are the monitoring requirements for new and existing sources?
- 63.11469 What are the notification requirements?

63.11470 What are the recordkeeping requirements?

Other Requirements and Information

- 63.11471 What General Provisions apply to this subpart?
- 63.11472 What definitions apply to this subpart?
- 63.11473 Who implements and enforces this subpart?
- 63.11474 [Reserved]

Tables to Subpart TTTTTT of Part 63

Table 1 to Subpart TTTTTT of Part 63—Applicability of General Provisions to Subpart TTTTTT 85

What Is The Compliance Date?

- Existing Sources: December 28, 2009.
- New Sources: Upon initial startup.

What Are The Permitting Requirements?

· Affected facilities must obtain a Title V permit.

What Are The Impacts?

 Three glass plants are expected to have to add controls to comply with the rule.

What Records Are Required?

Reporting:

- Initial notification and notification of compliance status (may be combined), due 120 days after promulgation date
- Initial notification informs EPA that the facility is subject to the standards. Notification of compliance status provides certification of compliance with standards.
- No ongoing compliance reports to be required beyond Title V Requirements.

Recordkeeping:

- Records to include copies of notifications submitted to EPA, glass production data, and records of monitoring and inspections.
- Records to be maintained in a form suitable and readily available for expeditious review.

You can also contact your Regional EPA air toxics office at the following numbers:

Address	States	Website/ Phone Number
Region 1 1 Congress Street Suite 1100 Boston, MA 02114-2023	CT, MA, ME, NH, RI, VT	www.epa.gov/region1 (888) 372-7341 (617) 918-1650
Region 2 290 Broadway New York, NY 10007-1866	NJ, NY, PR, VI	www.epa.gov/region2 (212) 637-4023
Region 3 1650 Arch Street Philadelphia, PA 19103-2029	DE, MD, PA, VA, WV, DC	www.epa.gov/region3 (800) 241-1754 (215) 814-2196
Region 4 Atlanta Federal Center 61 Forsyth Street, SW Atlanta, GA 30303-8960	FL, NC, SC, KY, TN, GA, AL, MS	www.epa.gov/region/ (404) 562-9131
Region 5 77 West Jackson Blvd Chicago, IL 60604-3507	IL, IN, MI, WI, MN, OH	www.epa.gov/region5 (312) 353-3575 (312) 353-4145 (312) 886-3850
Region 6 1445 Ross Avenue Sulte 1200 Dallas, TX 75202-2733	AR, LA, NM, OK, TX	www.epa.gov/region6 (800) 621-8431* 214-665-7171
Region 7 901 North Fifth Street Kansas City, KS 66101	IA, KS, MO, NE	www.epa.gov/region7 (800) 223-0425 (913) 551-7566
Region 8 1595 Wynkoop St. Denver, CO 80202-1129	CO, MT, ND, SD, UT, WY	www.epa.gov/region8 (800) 227-8917* (303) 312-6460
Region 9 75 Hawthorne Street San Francisco, CA 94105	CA, AZ, HI, NV, GU, AS, MP	www.epa.gov/region9 (415) 744-1197
Region 10 1200 Sixth Ave Seattle, WA 98101	AK, ID, WA, OR	www.epa.gov/region10 (800) 424-4372* (206) 553-2117

^{*}For sources within the region only.

For More Information

Copies of the rule and other materials are located at : www.epa.gov/ttn/atw/area/arearules.html

United States Environmental Protection Agency December 2007

www.epa.gov/ttn/atw/eparules.html

Office of Air Quality Planning & Standards (El 43-02)

Summary of Regulations Controlling Air Emissions for the

GLASS MANUFACTURING INDUSTRY

NATIONAL EMISSION
STANDARDS FOR
HAZARDOUS AIR
POLLUTANTS
NESHAP
(SUBPART SSSSS)
FINAL RULE

GLASS MANUFACTURING (SUBPART SSSSS)

What Is An Area Source?

 Any source that is not a major source.
 (A major source is a facility that emits, or has the potential to emit in the absence of controls, at least 10 tons per year (TPY) of individual hazardous air pollutants (HAP) or 25 TPY of combined HAP.)

Who Does This Rule Apply To?

 Facilities with glass manufacturing furnaces producing at least 50 tons of glass per year.

Who Is Subject To The Rule?

 Glass manufacturing plants with continuous furnaces that process urban HAP metals (As, Cd, Cr, Pb, Mn, Ni) as raw materials (not including trace materials in non-HAP raw materials such as sand).

What Am I Required To Do?

 All affected sources must meet one of two emissions limits. New and existing sources have different monitoring requirements.

The charts on the following pages explain, in detail, how all affected glass manufacturers can comply with the rule.

Initial testing requirement:

 One-time performance test on each furnace unless the furnace has been tested in the last 5 years and the previous test demonstrated compliance.

	Monitoring Requirements		
	Baghouse	ESP	
Existing	Inlet temperature monitoring: record every 15 minutes and record every 8 hours	ESP monitoring of the secondary voltage and secondary electrical current to each field of the ESP; measure every 15 minutes and record every 8 hours	
New	Leak detectors	Install CPMS to measure and record the secondary voltage and secondary current to each field of the ESP	
Sources	Annual inspe	Annual inspections of furnace control devices	
All Sc	Can submit a request for alternative monitoring under §60.8 or §63.8(f)		

Emission Limits		
Pollutant	Emission Limit*	
Particulate Matter	0.2 lb/ton (0.1 g/kg)	
Combined Urban HAP (As, Cd, Cr, Pb, Mn, Ni)	0.02 lb/ton (0.01 g/kg)	

^{*} Pounds emitted per ton of glass produced. (Grams emitted per kilogram of glass produced.)

